Xinhao Liang, Feihu Hu, X. Li, Lin Zhang, Xuan Feng, Mohammad Abu Gunmi
{"title":"基于深度时空残差网络的超短期风速预测","authors":"Xinhao Liang, Feihu Hu, X. Li, Lin Zhang, Xuan Feng, Mohammad Abu Gunmi","doi":"10.1063/5.0153298","DOIUrl":null,"url":null,"abstract":"To maintain power system stability, accurate wind speed prediction is essential. Taking into account the temporal and spatial characteristics of wind speed in an integrated manner can improve the accuracy of wind speed prediction. Considering complex nonlinear spatial factors such as wake effects in wind farms, a deep residual network is valuable in predicting wind speed with a high degree of accuracy. Wind speed data are typically a time series that requires feature extraction and attribute modeling, while maintaining signal integrity. In order to measure the importance of different temporal attributes and effectively aggregate temporal and spatial features, we used a parameter fusion matrix. We introduce a deep spatial-temporal residual network (DST-ResNet) for wind speed prediction that extracts the spatial-temporal characteristics, which can forecast the future wind speed of a multi-site wind farm in a particular region. In this model, wind speed data's nearby property and periodic property are separately modeled using a residual network. The outputs of the two temporal components are dynamically aggregated using a parameter fusion matrix and then fused with additional meteorological features to achieve wind speed prediction. Based on wind data from the National Renewable Energy Laboratory, our experiments show that the proposed DST-ResNet improves prediction accuracy by 8.90%.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-short-term wind speed prediction based on deep spatial-temporal residual network\",\"authors\":\"Xinhao Liang, Feihu Hu, X. Li, Lin Zhang, Xuan Feng, Mohammad Abu Gunmi\",\"doi\":\"10.1063/5.0153298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To maintain power system stability, accurate wind speed prediction is essential. Taking into account the temporal and spatial characteristics of wind speed in an integrated manner can improve the accuracy of wind speed prediction. Considering complex nonlinear spatial factors such as wake effects in wind farms, a deep residual network is valuable in predicting wind speed with a high degree of accuracy. Wind speed data are typically a time series that requires feature extraction and attribute modeling, while maintaining signal integrity. In order to measure the importance of different temporal attributes and effectively aggregate temporal and spatial features, we used a parameter fusion matrix. We introduce a deep spatial-temporal residual network (DST-ResNet) for wind speed prediction that extracts the spatial-temporal characteristics, which can forecast the future wind speed of a multi-site wind farm in a particular region. In this model, wind speed data's nearby property and periodic property are separately modeled using a residual network. The outputs of the two temporal components are dynamically aggregated using a parameter fusion matrix and then fused with additional meteorological features to achieve wind speed prediction. Based on wind data from the National Renewable Energy Laboratory, our experiments show that the proposed DST-ResNet improves prediction accuracy by 8.90%.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0153298\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0153298","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ultra-short-term wind speed prediction based on deep spatial-temporal residual network
To maintain power system stability, accurate wind speed prediction is essential. Taking into account the temporal and spatial characteristics of wind speed in an integrated manner can improve the accuracy of wind speed prediction. Considering complex nonlinear spatial factors such as wake effects in wind farms, a deep residual network is valuable in predicting wind speed with a high degree of accuracy. Wind speed data are typically a time series that requires feature extraction and attribute modeling, while maintaining signal integrity. In order to measure the importance of different temporal attributes and effectively aggregate temporal and spatial features, we used a parameter fusion matrix. We introduce a deep spatial-temporal residual network (DST-ResNet) for wind speed prediction that extracts the spatial-temporal characteristics, which can forecast the future wind speed of a multi-site wind farm in a particular region. In this model, wind speed data's nearby property and periodic property are separately modeled using a residual network. The outputs of the two temporal components are dynamically aggregated using a parameter fusion matrix and then fused with additional meteorological features to achieve wind speed prediction. Based on wind data from the National Renewable Energy Laboratory, our experiments show that the proposed DST-ResNet improves prediction accuracy by 8.90%.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy