{"title":"基于深度学习的有效虹膜识别系统虹膜分割算法","authors":"Sruthi Kunkuma Balasubramanian, Vijayakumar Jeganathan, Thavamani Subramani","doi":"10.46604/peti.2023.10002","DOIUrl":null,"url":null,"abstract":"In this study, a 19-layer convolutional neural network model is developed for accurate iris segmentation and is trained and validated using five publicly available iris image datasets. An integrodifferential operator is used to create labeled images for CASIA v1.0, CASIA v2.0, and PolyU Iris image datasets. The performance of the proposed model is evaluated based on accuracy, sensitivity, selectivity, precision, and F-score. The accuracy obtained for CASIA v1.0, CASIA v2.0, CASIA Iris Interval, IITD, and PolyU Iris are 0.82, 0.97, 0.9923, 0.9942, and 0.98, respectively. The result shows that the proposed model can accurately predict iris and non-iris regions and thus can be an effective tool for iris segmentation.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Iris Segmentation Algorithm for Effective Iris Recognition System\",\"authors\":\"Sruthi Kunkuma Balasubramanian, Vijayakumar Jeganathan, Thavamani Subramani\",\"doi\":\"10.46604/peti.2023.10002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a 19-layer convolutional neural network model is developed for accurate iris segmentation and is trained and validated using five publicly available iris image datasets. An integrodifferential operator is used to create labeled images for CASIA v1.0, CASIA v2.0, and PolyU Iris image datasets. The performance of the proposed model is evaluated based on accuracy, sensitivity, selectivity, precision, and F-score. The accuracy obtained for CASIA v1.0, CASIA v2.0, CASIA Iris Interval, IITD, and PolyU Iris are 0.82, 0.97, 0.9923, 0.9942, and 0.98, respectively. The result shows that the proposed model can accurately predict iris and non-iris regions and thus can be an effective tool for iris segmentation.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2023.10002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2023.10002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning-Based Iris Segmentation Algorithm for Effective Iris Recognition System
In this study, a 19-layer convolutional neural network model is developed for accurate iris segmentation and is trained and validated using five publicly available iris image datasets. An integrodifferential operator is used to create labeled images for CASIA v1.0, CASIA v2.0, and PolyU Iris image datasets. The performance of the proposed model is evaluated based on accuracy, sensitivity, selectivity, precision, and F-score. The accuracy obtained for CASIA v1.0, CASIA v2.0, CASIA Iris Interval, IITD, and PolyU Iris are 0.82, 0.97, 0.9923, 0.9942, and 0.98, respectively. The result shows that the proposed model can accurately predict iris and non-iris regions and thus can be an effective tool for iris segmentation.