{"title":"利用探地雷达测绘加拿大亚北极湖泊的雪深","authors":"Alicia F. Pouw, H. Kheyrollah Pour, Alex Maclean","doi":"10.5194/tc-17-2367-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Ice thickness across lake ice is mainly influenced by the presence of snow\nand its distribution, which affects the rate of lake ice growth. The\ndistribution of snow depth over lake ice varies due to wind redistribution\nand snowpack metamorphism, affecting the variability of lake ice thickness.\nAccurate and consistent snow depth data on lake ice are sparse and\nchallenging to obtain. However, high spatial resolution lake snow depth\nobservations are necessary for the next generation of thermodynamic lake ice models to improve the understanding of how the varying distribution of snow depth influences lake ice formation and growth. This study was conducted using ground-penetrating radar (GPR) acquisitions with ∼9 cm sampling resolution along transects totalling ∼44 km to map\nsnow depth over four Canadian sub-arctic freshwater lakes. The lake snow\ndepth derived from GPR two-way travel time (TWT) resulted in an average relative error of under\n10 % when compared to 2430 in situ snow depth observations for the early and late winter season. The snow depth derived from GPR TWTs for the early winter season was estimated with a root mean square error (RMSE) of 1.6 cm and a mean bias error of 0.01 cm, while the accuracy for the late winter season on a deeper snowpack was estimated with a RMSE of 2.9 cm and a mean bias error of 0.4 cm. The GPR-derived snow depths were interpolated to create 1 m spatial resolution snow depth maps. The findings showed improved lake snow depth retrieval accuracy and introduced a fast and efficient method to obtain high spatial resolution snow depth information. The results suggest that GPR acquisitions can be used to derive lake snow depth, providing a viable alternative to manual snow depth monitoring methods. The findings can lead to an improved understanding of snow and lake ice interactions, which is essential for northern communities' safety and wellbeing and the scientific modelling community.\n","PeriodicalId":56315,"journal":{"name":"Cryosphere","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar\",\"authors\":\"Alicia F. Pouw, H. Kheyrollah Pour, Alex Maclean\",\"doi\":\"10.5194/tc-17-2367-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Ice thickness across lake ice is mainly influenced by the presence of snow\\nand its distribution, which affects the rate of lake ice growth. The\\ndistribution of snow depth over lake ice varies due to wind redistribution\\nand snowpack metamorphism, affecting the variability of lake ice thickness.\\nAccurate and consistent snow depth data on lake ice are sparse and\\nchallenging to obtain. However, high spatial resolution lake snow depth\\nobservations are necessary for the next generation of thermodynamic lake ice models to improve the understanding of how the varying distribution of snow depth influences lake ice formation and growth. This study was conducted using ground-penetrating radar (GPR) acquisitions with ∼9 cm sampling resolution along transects totalling ∼44 km to map\\nsnow depth over four Canadian sub-arctic freshwater lakes. The lake snow\\ndepth derived from GPR two-way travel time (TWT) resulted in an average relative error of under\\n10 % when compared to 2430 in situ snow depth observations for the early and late winter season. The snow depth derived from GPR TWTs for the early winter season was estimated with a root mean square error (RMSE) of 1.6 cm and a mean bias error of 0.01 cm, while the accuracy for the late winter season on a deeper snowpack was estimated with a RMSE of 2.9 cm and a mean bias error of 0.4 cm. The GPR-derived snow depths were interpolated to create 1 m spatial resolution snow depth maps. The findings showed improved lake snow depth retrieval accuracy and introduced a fast and efficient method to obtain high spatial resolution snow depth information. The results suggest that GPR acquisitions can be used to derive lake snow depth, providing a viable alternative to manual snow depth monitoring methods. The findings can lead to an improved understanding of snow and lake ice interactions, which is essential for northern communities' safety and wellbeing and the scientific modelling community.\\n\",\"PeriodicalId\":56315,\"journal\":{\"name\":\"Cryosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/tc-17-2367-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/tc-17-2367-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar
Abstract. Ice thickness across lake ice is mainly influenced by the presence of snow
and its distribution, which affects the rate of lake ice growth. The
distribution of snow depth over lake ice varies due to wind redistribution
and snowpack metamorphism, affecting the variability of lake ice thickness.
Accurate and consistent snow depth data on lake ice are sparse and
challenging to obtain. However, high spatial resolution lake snow depth
observations are necessary for the next generation of thermodynamic lake ice models to improve the understanding of how the varying distribution of snow depth influences lake ice formation and growth. This study was conducted using ground-penetrating radar (GPR) acquisitions with ∼9 cm sampling resolution along transects totalling ∼44 km to map
snow depth over four Canadian sub-arctic freshwater lakes. The lake snow
depth derived from GPR two-way travel time (TWT) resulted in an average relative error of under
10 % when compared to 2430 in situ snow depth observations for the early and late winter season. The snow depth derived from GPR TWTs for the early winter season was estimated with a root mean square error (RMSE) of 1.6 cm and a mean bias error of 0.01 cm, while the accuracy for the late winter season on a deeper snowpack was estimated with a RMSE of 2.9 cm and a mean bias error of 0.4 cm. The GPR-derived snow depths were interpolated to create 1 m spatial resolution snow depth maps. The findings showed improved lake snow depth retrieval accuracy and introduced a fast and efficient method to obtain high spatial resolution snow depth information. The results suggest that GPR acquisitions can be used to derive lake snow depth, providing a viable alternative to manual snow depth monitoring methods. The findings can lead to an improved understanding of snow and lake ice interactions, which is essential for northern communities' safety and wellbeing and the scientific modelling community.
期刊介绍:
The Cryosphere (TC) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.
The main subject areas are the following:
ice sheets and glaciers;
planetary ice bodies;
permafrost and seasonally frozen ground;
seasonal snow cover;
sea ice;
river and lake ice;
remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.