5G通信中基于频率选择面的带通滤波器设计与性能分析

Muhammad Haroon Tariq, Muhammad Noaman Zahid
{"title":"5G通信中基于频率选择面的带通滤波器设计与性能分析","authors":"Muhammad Haroon Tariq, Muhammad Noaman Zahid","doi":"10.46604/peti.2023.9313","DOIUrl":null,"url":null,"abstract":"In recent years, frequency selective surfaces (FSSs) have been extensively investigated in terms of their design and practical applications at microwave and optical frequencies. This study proposes a new design of a FSS layer, which is directly placed over the surface of an antenna to enhance its characteristics such as directivity, frequency selectivity, radiation efficiency, and gain. In the proposed design, two different substrates are used to analyze the improved performance of the FSS layer. For this purpose, FR-4 Epoxy and Duroid 5880 are used for cost effectiveness and to achieve the optimized performance of the antenna. The simulated and measured results are in good agreement, indicating the enhanced performance of antenna for WLAN and WiMAX applications. Finally, it is concluded that the proposed FSS layer ensures the best possible results of the filtering response as the first null gives divergence of more than 10 dB with its peak value layer.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Performance Analysis of Band Pass Filter Using Frequency Selective Surface for 5G Communication\",\"authors\":\"Muhammad Haroon Tariq, Muhammad Noaman Zahid\",\"doi\":\"10.46604/peti.2023.9313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, frequency selective surfaces (FSSs) have been extensively investigated in terms of their design and practical applications at microwave and optical frequencies. This study proposes a new design of a FSS layer, which is directly placed over the surface of an antenna to enhance its characteristics such as directivity, frequency selectivity, radiation efficiency, and gain. In the proposed design, two different substrates are used to analyze the improved performance of the FSS layer. For this purpose, FR-4 Epoxy and Duroid 5880 are used for cost effectiveness and to achieve the optimized performance of the antenna. The simulated and measured results are in good agreement, indicating the enhanced performance of antenna for WLAN and WiMAX applications. Finally, it is concluded that the proposed FSS layer ensures the best possible results of the filtering response as the first null gives divergence of more than 10 dB with its peak value layer.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2023.9313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2023.9313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,频率选择表面(FSS)在微波和光学频率下的设计和实际应用方面得到了广泛的研究。这项研究提出了一种新的FSS层设计,该层直接放置在天线表面上,以增强其指向性、频率选择性、辐射效率和增益等特性。在所提出的设计中,使用两种不同的基底来分析FSS层的改进性能。为此,FR-4环氧树脂和Duroid 5880用于成本效益和实现天线的优化性能。仿真和测量结果一致,表明该天线在WLAN和WiMAX应用中的性能得到了增强。最后,得出结论,所提出的FSS层确保了滤波响应的最佳结果,因为第一个零点与其峰值层的发散度超过10dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Performance Analysis of Band Pass Filter Using Frequency Selective Surface for 5G Communication
In recent years, frequency selective surfaces (FSSs) have been extensively investigated in terms of their design and practical applications at microwave and optical frequencies. This study proposes a new design of a FSS layer, which is directly placed over the surface of an antenna to enhance its characteristics such as directivity, frequency selectivity, radiation efficiency, and gain. In the proposed design, two different substrates are used to analyze the improved performance of the FSS layer. For this purpose, FR-4 Epoxy and Duroid 5880 are used for cost effectiveness and to achieve the optimized performance of the antenna. The simulated and measured results are in good agreement, indicating the enhanced performance of antenna for WLAN and WiMAX applications. Finally, it is concluded that the proposed FSS layer ensures the best possible results of the filtering response as the first null gives divergence of more than 10 dB with its peak value layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
期刊最新文献
Quantitative Shaking Evaluation of Bracing-Strengthened and Base-Isolated Buildings Using Seismic Intensity Level Prediction of Crop Leaf Health by MCCM and Histogram Learning Model Using Leaf Region A Self-Repairing Natural Rubber as a Novel Material Pad to Develop an Electro-Surgical Training Prototype Application of Genetic Algorithm and Analytical Method to Determine the Appropriate Locations and Capacities for Distributed Energy System A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1