火山环境中的自势研究:一种廉价有效的多尺度流体流动研究方法

IF 1 Q3 GEOCHEMISTRY & GEOPHYSICS International Journal of Geophysics Pub Date : 2019-10-20 DOI:10.1155/2019/2985824
N. Grobbe, S. Barde‐Cabusson
{"title":"火山环境中的自势研究:一种廉价有效的多尺度流体流动研究方法","authors":"N. Grobbe, S. Barde‐Cabusson","doi":"10.1155/2019/2985824","DOIUrl":null,"url":null,"abstract":"We demonstrate the value of using the self-potential method to study volcanic environments, and particularly fluid flow in those environments. We showcase the fact that self-potential measurements are a highly efficient way to map large areas of volcanic systems under challenging terrain conditions, where other geophysical techniques may be challenging or expensive to deploy. Using case studies of a variety of volcano types, including tuff cones, shield volcanoes, stratovolcanoes, and monogenetic fields, we emphasize the fact that self-potential signals enable us to study fluid flow in volcanic settings on multiple spatial and temporal scales. We categorize the examples into the following three multiscale fluid-flow processes: (1) deep hydrothermal systems, (2) shallow hydrothermal systems, and (3) groundwater. These examples highlight the different hydrological, hydrothermal, and structural inferences that can be made from self-potential signals, such as insight into shallow and deep hydrothermal systems, cooling behavior of lava flows, different hydrogeological domains, upwelling, infiltration, and lateral groundwater and hydrothermal fluid flow paths and velocities, elevation of the groundwater level, crater limits, regional faults, rift zones, incipient collapse limits, structural domains, and buried calderas. The case studies presented in this paper clearly demonstrate that the measured SP signals are a result of the coplay between microscale processes (e.g., electrokinetic, thermoelectric) and macroscale structural and environmental features. We discuss potential challenges and their causes when trying to uniquely interpret self-potential signals. Through integration with different geophysical and geochemical data types such as subsurface electrical resistivity distributions obtained from, e.g., electrical resistivity tomography or magnetotellurics, soil CO2 flux, and soil temperature, it is demonstrated that the hydrogeological interpretations obtained from SP measurements can be better constrained and/or validated.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2985824","citationCount":"16","resultStr":"{\"title\":\"Self-Potential Studies in Volcanic Environments: A Cheap and Efficient Method for Multiscale Fluid-Flow Investigations\",\"authors\":\"N. Grobbe, S. Barde‐Cabusson\",\"doi\":\"10.1155/2019/2985824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the value of using the self-potential method to study volcanic environments, and particularly fluid flow in those environments. We showcase the fact that self-potential measurements are a highly efficient way to map large areas of volcanic systems under challenging terrain conditions, where other geophysical techniques may be challenging or expensive to deploy. Using case studies of a variety of volcano types, including tuff cones, shield volcanoes, stratovolcanoes, and monogenetic fields, we emphasize the fact that self-potential signals enable us to study fluid flow in volcanic settings on multiple spatial and temporal scales. We categorize the examples into the following three multiscale fluid-flow processes: (1) deep hydrothermal systems, (2) shallow hydrothermal systems, and (3) groundwater. These examples highlight the different hydrological, hydrothermal, and structural inferences that can be made from self-potential signals, such as insight into shallow and deep hydrothermal systems, cooling behavior of lava flows, different hydrogeological domains, upwelling, infiltration, and lateral groundwater and hydrothermal fluid flow paths and velocities, elevation of the groundwater level, crater limits, regional faults, rift zones, incipient collapse limits, structural domains, and buried calderas. The case studies presented in this paper clearly demonstrate that the measured SP signals are a result of the coplay between microscale processes (e.g., electrokinetic, thermoelectric) and macroscale structural and environmental features. We discuss potential challenges and their causes when trying to uniquely interpret self-potential signals. Through integration with different geophysical and geochemical data types such as subsurface electrical resistivity distributions obtained from, e.g., electrical resistivity tomography or magnetotellurics, soil CO2 flux, and soil temperature, it is demonstrated that the hydrogeological interpretations obtained from SP measurements can be better constrained and/or validated.\",\"PeriodicalId\":45602,\"journal\":{\"name\":\"International Journal of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/2985824\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/2985824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/2985824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 16

摘要

我们证明了利用自势方法研究火山环境,特别是这些环境中的流体流动的价值。我们展示了这样一个事实,即自我电位测量是在具有挑战性的地形条件下绘制大面积火山系统的高效方法,而其他地球物理技术可能具有挑战性或成本高昂。通过对各种火山类型(包括凝灰岩锥、盾状火山、层状火山和单成因场)的案例研究,我们强调了这样一个事实,即自电位信号使我们能够在多个时空尺度上研究火山环境中的流体流动。我们将这些例子分为以下三个多尺度流体流动过程:(1)深部热液系统,(2)浅层热液系统,(3)地下水。这些例子强调了可以从自电位信号中得出的不同水文、热液和构造推断,例如对浅层和深层热液系统的了解、熔岩流的冷却行为、不同的水文地质域、上升流、渗透、侧向地下水和热液流体的流动路径和速度、地下水位的高程、火山口界限、区域断层、裂谷带、早期崩塌界限、构造域、埋藏的火山口。本文提出的案例研究清楚地表明,测量到的SP信号是微观过程(如电动、热电)与宏观结构和环境特征共同作用的结果。我们讨论潜在的挑战和他们的原因时,试图独特地解释自我电位信号。通过与不同的地球物理和地球化学数据类型(如电阻率层析成像或大地电磁测量获得的地下电阻率分布、土壤CO2通量和土壤温度)的整合,证明了SP测量获得的水文地质解释可以更好地约束和/或验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Potential Studies in Volcanic Environments: A Cheap and Efficient Method for Multiscale Fluid-Flow Investigations
We demonstrate the value of using the self-potential method to study volcanic environments, and particularly fluid flow in those environments. We showcase the fact that self-potential measurements are a highly efficient way to map large areas of volcanic systems under challenging terrain conditions, where other geophysical techniques may be challenging or expensive to deploy. Using case studies of a variety of volcano types, including tuff cones, shield volcanoes, stratovolcanoes, and monogenetic fields, we emphasize the fact that self-potential signals enable us to study fluid flow in volcanic settings on multiple spatial and temporal scales. We categorize the examples into the following three multiscale fluid-flow processes: (1) deep hydrothermal systems, (2) shallow hydrothermal systems, and (3) groundwater. These examples highlight the different hydrological, hydrothermal, and structural inferences that can be made from self-potential signals, such as insight into shallow and deep hydrothermal systems, cooling behavior of lava flows, different hydrogeological domains, upwelling, infiltration, and lateral groundwater and hydrothermal fluid flow paths and velocities, elevation of the groundwater level, crater limits, regional faults, rift zones, incipient collapse limits, structural domains, and buried calderas. The case studies presented in this paper clearly demonstrate that the measured SP signals are a result of the coplay between microscale processes (e.g., electrokinetic, thermoelectric) and macroscale structural and environmental features. We discuss potential challenges and their causes when trying to uniquely interpret self-potential signals. Through integration with different geophysical and geochemical data types such as subsurface electrical resistivity distributions obtained from, e.g., electrical resistivity tomography or magnetotellurics, soil CO2 flux, and soil temperature, it is demonstrated that the hydrogeological interpretations obtained from SP measurements can be better constrained and/or validated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Geophysics
International Journal of Geophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.50
自引率
0.00%
发文量
12
审稿时长
21 weeks
期刊介绍: International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.
期刊最新文献
Potential Locations of Strong Earthquakes in Bulgaria and the Neighbouring Regions Preliminary Study of Subsurface Geological Setting Based on the Gravity Anomalies in Karangrejo-Tinatar Geothermal Area, Pacitan Regency, Indonesia Mt. Etna Tilt Signals Associated with February 6, 2023, M=7.8 and M=7.5 Turkey Earthquakes Climate Change Impact on the Trigger of Natural Disasters over South-Eastern Himalayas Foothill Region of Myanmar: Extreme Rainfall Analysis Evaluation of Building Seismic Capacity Based on Improved Naive Bayesian Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1