景观破碎化分析在冰逃逸环境中的应用:对太平洋海象的潜在影响

IF 1.9 4区 地球科学 Q3 ECOLOGY Polar Research Pub Date : 2022-07-05 DOI:10.33265/polar.v41.5169
Anthony Himmelberger, K. Frey, F. Sangermano
{"title":"景观破碎化分析在冰逃逸环境中的应用:对太平洋海象的潜在影响","authors":"Anthony Himmelberger, K. Frey, F. Sangermano","doi":"10.33265/polar.v41.5169","DOIUrl":null,"url":null,"abstract":"Sea-ice cover across the Arctic has declined rapidly over the past several decades owing to amplified climate warming. The Pacific walrus (Odobenus rosmarus divergens) relies on sea-ice floes in the St. Lawrence Island (SLI) and Wainwright regions of the Bering and Chukchi seas surrounding Alaska as a platform for rest, feeding and reproduction. Lower concentrations of thick ice floes are generally associated with earlier seasonal fragmentation and shorter annual persistence of sea-ice cover, potentially affecting the life history of the Pacific walrus. In this study, 24 Landsat satellite images were classified into thick ice, thin ice or open water to assess sea-ice fragmentation over the spring-summer breakup period. Geospatial fragmentation analyses traditionally used in terrestrial landscapes were newly implemented in this study to characterize the icescape environment. Fragmentation of sea ice was assessed based on the Percent of Landscape, Number of Patches, Mean Area, Shape Index, Euclidean Nearest Neighbor and Edge Density. Results show that lower sea-ice concentrations in both the SLI and Wainwright regions were associated with smaller sea-ice floes. In the Bering Sea, lower sea-ice concentrations were also associated with increases in the number of ice floes, floe isolation and edge density. By contrast, lower sea-ice concentrations in the Chukchi Sea were associated with ice floes that were more circular in shape. The continuation of sea-ice decline with shifting icescape characteristics may result in walruses having to swim longer distances in the northern Bering Sea and adapt to use less-preferred, rounder ice floes in the Chukchi Sea.","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying landscape fragmentation analysis to icescape environments: potential impacts for the Pacific walrus (Odobenus rosmarus divergens)\",\"authors\":\"Anthony Himmelberger, K. Frey, F. Sangermano\",\"doi\":\"10.33265/polar.v41.5169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea-ice cover across the Arctic has declined rapidly over the past several decades owing to amplified climate warming. The Pacific walrus (Odobenus rosmarus divergens) relies on sea-ice floes in the St. Lawrence Island (SLI) and Wainwright regions of the Bering and Chukchi seas surrounding Alaska as a platform for rest, feeding and reproduction. Lower concentrations of thick ice floes are generally associated with earlier seasonal fragmentation and shorter annual persistence of sea-ice cover, potentially affecting the life history of the Pacific walrus. In this study, 24 Landsat satellite images were classified into thick ice, thin ice or open water to assess sea-ice fragmentation over the spring-summer breakup period. Geospatial fragmentation analyses traditionally used in terrestrial landscapes were newly implemented in this study to characterize the icescape environment. Fragmentation of sea ice was assessed based on the Percent of Landscape, Number of Patches, Mean Area, Shape Index, Euclidean Nearest Neighbor and Edge Density. Results show that lower sea-ice concentrations in both the SLI and Wainwright regions were associated with smaller sea-ice floes. In the Bering Sea, lower sea-ice concentrations were also associated with increases in the number of ice floes, floe isolation and edge density. By contrast, lower sea-ice concentrations in the Chukchi Sea were associated with ice floes that were more circular in shape. The continuation of sea-ice decline with shifting icescape characteristics may result in walruses having to swim longer distances in the northern Bering Sea and adapt to use less-preferred, rounder ice floes in the Chukchi Sea.\",\"PeriodicalId\":49684,\"journal\":{\"name\":\"Polar Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.33265/polar.v41.5169\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v41.5169","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,由于气候变暖加剧,整个北极的海冰覆盖面积迅速减少。太平洋海象(Odobenus rosmarus divergens)依靠阿拉斯加周围白令海和楚科奇海的圣劳伦斯岛(SLI)和温赖特地区的海冰作为休息、觅食和繁殖的平台。较低的厚浮冰浓度通常与较早的季节性破碎和较短的海冰覆盖年持续时间有关,这可能影响太平洋海象的生活史。在这项研究中,24张Landsat卫星图像被分为厚冰、薄冰和开放水域,以评估春夏破裂期间的海冰破碎情况。在陆地景观中采用了传统的地理空间碎片化分析方法来描述冰逃逸环境。根据景观百分比、斑块数量、平均面积、形状指数、欧几里得最近邻和边缘密度对海冰破碎化进行了评估。结果表明,SLI和Wainwright地区的海冰浓度较低,海冰面积较小。在白令海,较低的海冰浓度还与浮冰数量、浮冰隔离和边缘密度的增加有关。相比之下,楚科奇海较低的海冰浓度与形状更圆的浮冰有关。海冰的持续减少和冰逸特征的变化可能导致海象不得不在白令海北部游更长的距离,并适应使用楚科奇海不太喜欢的、更圆的浮冰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying landscape fragmentation analysis to icescape environments: potential impacts for the Pacific walrus (Odobenus rosmarus divergens)
Sea-ice cover across the Arctic has declined rapidly over the past several decades owing to amplified climate warming. The Pacific walrus (Odobenus rosmarus divergens) relies on sea-ice floes in the St. Lawrence Island (SLI) and Wainwright regions of the Bering and Chukchi seas surrounding Alaska as a platform for rest, feeding and reproduction. Lower concentrations of thick ice floes are generally associated with earlier seasonal fragmentation and shorter annual persistence of sea-ice cover, potentially affecting the life history of the Pacific walrus. In this study, 24 Landsat satellite images were classified into thick ice, thin ice or open water to assess sea-ice fragmentation over the spring-summer breakup period. Geospatial fragmentation analyses traditionally used in terrestrial landscapes were newly implemented in this study to characterize the icescape environment. Fragmentation of sea ice was assessed based on the Percent of Landscape, Number of Patches, Mean Area, Shape Index, Euclidean Nearest Neighbor and Edge Density. Results show that lower sea-ice concentrations in both the SLI and Wainwright regions were associated with smaller sea-ice floes. In the Bering Sea, lower sea-ice concentrations were also associated with increases in the number of ice floes, floe isolation and edge density. By contrast, lower sea-ice concentrations in the Chukchi Sea were associated with ice floes that were more circular in shape. The continuation of sea-ice decline with shifting icescape characteristics may result in walruses having to swim longer distances in the northern Bering Sea and adapt to use less-preferred, rounder ice floes in the Chukchi Sea.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polar Research
Polar Research 地学-地球科学综合
CiteScore
3.20
自引率
5.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public. Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time. The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.
期刊最新文献
Some issues related to the Svalbardian tectonic event (Ellesmerian Orogeny) in Svalbard Drivers of spatio-temporal variations in summer surface water temperatures of Arctic Fennoscandian lakes (2000–21) The relationship between Antarctic sea-ice extent change and the main modes of sea-ice variability in austral winter Widespread exposure to Francisella tularensis in Rangifer tarandus in Canada and Alaska Polar vortex weakening and its impact on surface temperature in recent decades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1