{"title":"路面摄影图像中骨料和沥青的分割","authors":"A. Mejía, M. Alzate, O. Reyes-Ortiz","doi":"10.24423/ENGTRANS.1242.20210126","DOIUrl":null,"url":null,"abstract":"Particle size distribution of aggregate in asphalt pavements is used for determining important characteristics like stiffness, durability, fatigue resistance, etc. Unfortunately, measuring this distribution requires a sieving process that cannot be done directly on the already mixed pavement. The use of digital image processing could facilitate this measurement, for which it is important to classify aggregate from asphalt in the image. This classification is difficult even for humans and much more for classical image segmentation algorithms. In this paper, an expert committee approach was used, including classical adaptive Otsu, k-means vector quantization over a set of 8 principal components obtained from 26 features, and a Gaussian mixture model whose parameters are estimated through the expectation-maximization algorithm. A novel cellular automata approach is used to coordinate these expert opinions. Finally, a simple heuristic is used to reduce sub- and over-segmentation. The segmentation results are comparable to those obtained by a human expert, while the sieve size of the segmented images corresponds very well with that obtained from the sieving process, validating the proposed method of segmentation. The results show that with the digital imaging procedure it was possible to detect particles with a size of 100 m with 90% of success with respect to time-consuming manual techniques. In addition, with these results it is possible to establish the homogeneity of the sample and the distribution of the particles within the asphalt mixture.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"69 1","pages":"19-42"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of Aggregate and Asphalt in Photographic Images of Pavements\",\"authors\":\"A. Mejía, M. Alzate, O. Reyes-Ortiz\",\"doi\":\"10.24423/ENGTRANS.1242.20210126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle size distribution of aggregate in asphalt pavements is used for determining important characteristics like stiffness, durability, fatigue resistance, etc. Unfortunately, measuring this distribution requires a sieving process that cannot be done directly on the already mixed pavement. The use of digital image processing could facilitate this measurement, for which it is important to classify aggregate from asphalt in the image. This classification is difficult even for humans and much more for classical image segmentation algorithms. In this paper, an expert committee approach was used, including classical adaptive Otsu, k-means vector quantization over a set of 8 principal components obtained from 26 features, and a Gaussian mixture model whose parameters are estimated through the expectation-maximization algorithm. A novel cellular automata approach is used to coordinate these expert opinions. Finally, a simple heuristic is used to reduce sub- and over-segmentation. The segmentation results are comparable to those obtained by a human expert, while the sieve size of the segmented images corresponds very well with that obtained from the sieving process, validating the proposed method of segmentation. The results show that with the digital imaging procedure it was possible to detect particles with a size of 100 m with 90% of success with respect to time-consuming manual techniques. In addition, with these results it is possible to establish the homogeneity of the sample and the distribution of the particles within the asphalt mixture.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":\"69 1\",\"pages\":\"19-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.1242.20210126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1242.20210126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Segmentation of Aggregate and Asphalt in Photographic Images of Pavements
Particle size distribution of aggregate in asphalt pavements is used for determining important characteristics like stiffness, durability, fatigue resistance, etc. Unfortunately, measuring this distribution requires a sieving process that cannot be done directly on the already mixed pavement. The use of digital image processing could facilitate this measurement, for which it is important to classify aggregate from asphalt in the image. This classification is difficult even for humans and much more for classical image segmentation algorithms. In this paper, an expert committee approach was used, including classical adaptive Otsu, k-means vector quantization over a set of 8 principal components obtained from 26 features, and a Gaussian mixture model whose parameters are estimated through the expectation-maximization algorithm. A novel cellular automata approach is used to coordinate these expert opinions. Finally, a simple heuristic is used to reduce sub- and over-segmentation. The segmentation results are comparable to those obtained by a human expert, while the sieve size of the segmented images corresponds very well with that obtained from the sieving process, validating the proposed method of segmentation. The results show that with the digital imaging procedure it was possible to detect particles with a size of 100 m with 90% of success with respect to time-consuming manual techniques. In addition, with these results it is possible to establish the homogeneity of the sample and the distribution of the particles within the asphalt mixture.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.