{"title":"传统马铃薯生产的农业光伏系统的生命周期评估","authors":"Christin Busch, K. Wydra","doi":"10.1063/5.0156779","DOIUrl":null,"url":null,"abstract":"Climate change and land use conflicts represent two of the greatest challenges worldwide. One possible solution are agrivoltaic (APV) systems, in which agricultural production is combined with a photovoltaic (PV) system in the same area. However, there is insufficient information on the environmental impacts of this technology. Therefore, the goal of this study was to evaluate the environmental impacts of an agrivoltaic system with conventional potato production using life cycle assessment (LCA). For this purpose, three scenarios were developed and compared in terms of their environmental impact: An APV system with combined potato and electricity production (scenario 1), a system with spatially separated potato and photovoltaic (PV) electricity production (scenario 2), and a potato scenario in which the electricity purchase was covered by the German electricity mix (scenario 3). The APV system (scenario 1) and the system with ground-mounted PV modules (scenario 2) performed better than scenario 3. In the Land Use category, scenario 1 caused the lowest environmental impact. Comparing the PV scenarios, scenario 2 had lower impacts in 12 of the 17 impact categories due to lower steel consumption. Also, comparing scenario 1 with scenario 3, lower impacts of the APV system were observed in 13 categories. The impacts of APV systems are generally similar to those of ground mounted PV systems, and impacts of both PV systems are lower than the existing, conventional systems of separate energy and crop production. However, due to ongoing advances in system design, materials used for the mounting structures and in the development of solar modules, it can be expected that the impact of APV will be significantly reduced in the future.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life cycle assessment of an agrivoltaic system with conventional potato production\",\"authors\":\"Christin Busch, K. Wydra\",\"doi\":\"10.1063/5.0156779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change and land use conflicts represent two of the greatest challenges worldwide. One possible solution are agrivoltaic (APV) systems, in which agricultural production is combined with a photovoltaic (PV) system in the same area. However, there is insufficient information on the environmental impacts of this technology. Therefore, the goal of this study was to evaluate the environmental impacts of an agrivoltaic system with conventional potato production using life cycle assessment (LCA). For this purpose, three scenarios were developed and compared in terms of their environmental impact: An APV system with combined potato and electricity production (scenario 1), a system with spatially separated potato and photovoltaic (PV) electricity production (scenario 2), and a potato scenario in which the electricity purchase was covered by the German electricity mix (scenario 3). The APV system (scenario 1) and the system with ground-mounted PV modules (scenario 2) performed better than scenario 3. In the Land Use category, scenario 1 caused the lowest environmental impact. Comparing the PV scenarios, scenario 2 had lower impacts in 12 of the 17 impact categories due to lower steel consumption. Also, comparing scenario 1 with scenario 3, lower impacts of the APV system were observed in 13 categories. The impacts of APV systems are generally similar to those of ground mounted PV systems, and impacts of both PV systems are lower than the existing, conventional systems of separate energy and crop production. However, due to ongoing advances in system design, materials used for the mounting structures and in the development of solar modules, it can be expected that the impact of APV will be significantly reduced in the future.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0156779\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0156779","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Life cycle assessment of an agrivoltaic system with conventional potato production
Climate change and land use conflicts represent two of the greatest challenges worldwide. One possible solution are agrivoltaic (APV) systems, in which agricultural production is combined with a photovoltaic (PV) system in the same area. However, there is insufficient information on the environmental impacts of this technology. Therefore, the goal of this study was to evaluate the environmental impacts of an agrivoltaic system with conventional potato production using life cycle assessment (LCA). For this purpose, three scenarios were developed and compared in terms of their environmental impact: An APV system with combined potato and electricity production (scenario 1), a system with spatially separated potato and photovoltaic (PV) electricity production (scenario 2), and a potato scenario in which the electricity purchase was covered by the German electricity mix (scenario 3). The APV system (scenario 1) and the system with ground-mounted PV modules (scenario 2) performed better than scenario 3. In the Land Use category, scenario 1 caused the lowest environmental impact. Comparing the PV scenarios, scenario 2 had lower impacts in 12 of the 17 impact categories due to lower steel consumption. Also, comparing scenario 1 with scenario 3, lower impacts of the APV system were observed in 13 categories. The impacts of APV systems are generally similar to those of ground mounted PV systems, and impacts of both PV systems are lower than the existing, conventional systems of separate energy and crop production. However, due to ongoing advances in system design, materials used for the mounting structures and in the development of solar modules, it can be expected that the impact of APV will be significantly reduced in the future.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy