Chyntia Jaby Ak Entuni, T. Zulcaffle, Kismet Hong Ping, A. Sharangi, T. Upadhyay, Mohd Saeed
{"title":"基于低成本KINECT相机和改进CNN算法的辣椒叶病智能农业监测解决方案","authors":"Chyntia Jaby Ak Entuni, T. Zulcaffle, Kismet Hong Ping, A. Sharangi, T. Upadhyay, Mohd Saeed","doi":"10.11113/jurnalteknologi.v85.19884","DOIUrl":null,"url":null,"abstract":"\n\n\n\nChilli is extensively grown all over the globe and is particularly important as a food. One of the most difficult issues confronting chilli cultivation is the requirement for accurate identification of leaf diseases. Leaf diseases have a negative impact on chilli production quality, resulting in significant losses for farmers. Numerous Machine Learning (ML) and Convolution Neural Network (CNN) models have been developed for classifying chilli leaf diseases under uniform background and uncomplicated leaf conditions, with an average classification accuracy achieved. However, a diseased leaf usually grows alongside a cluster of other leaves, making it difficult to classify the disease. It will be easier for farmers if there is a reliable model that can classify a chilli leaf disease in a cluster of leaves. The aim of this study was to propose a model for classifying chilli leaf disease from both a uniform background and a complex cluster of leaves. Images of diseased chilli leaves are acquired using a low-cost Kinect camera, which include discoloration, grey spots, and leaf curling. The different types of chilli leaf disease are then classified using an improved ShuffleNet CNN model. With a classification accuracy of 99.82%, the proposed model outperformed the other existing models.\n\n\n\n","PeriodicalId":47541,"journal":{"name":"Jurnal Teknologi-Sciences & Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMART AGRICULTURAL MONITORING SOLUTION FOR CHILLI LEAF DISEASES USING A LOW-COST KINECT CAMERA AND AN IMPROVED CNN ALGORITHM\",\"authors\":\"Chyntia Jaby Ak Entuni, T. Zulcaffle, Kismet Hong Ping, A. Sharangi, T. Upadhyay, Mohd Saeed\",\"doi\":\"10.11113/jurnalteknologi.v85.19884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nChilli is extensively grown all over the globe and is particularly important as a food. One of the most difficult issues confronting chilli cultivation is the requirement for accurate identification of leaf diseases. Leaf diseases have a negative impact on chilli production quality, resulting in significant losses for farmers. Numerous Machine Learning (ML) and Convolution Neural Network (CNN) models have been developed for classifying chilli leaf diseases under uniform background and uncomplicated leaf conditions, with an average classification accuracy achieved. However, a diseased leaf usually grows alongside a cluster of other leaves, making it difficult to classify the disease. It will be easier for farmers if there is a reliable model that can classify a chilli leaf disease in a cluster of leaves. The aim of this study was to propose a model for classifying chilli leaf disease from both a uniform background and a complex cluster of leaves. Images of diseased chilli leaves are acquired using a low-cost Kinect camera, which include discoloration, grey spots, and leaf curling. The different types of chilli leaf disease are then classified using an improved ShuffleNet CNN model. With a classification accuracy of 99.82%, the proposed model outperformed the other existing models.\\n\\n\\n\\n\",\"PeriodicalId\":47541,\"journal\":{\"name\":\"Jurnal Teknologi-Sciences & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi-Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/jurnalteknologi.v85.19884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi-Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v85.19884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
SMART AGRICULTURAL MONITORING SOLUTION FOR CHILLI LEAF DISEASES USING A LOW-COST KINECT CAMERA AND AN IMPROVED CNN ALGORITHM
Chilli is extensively grown all over the globe and is particularly important as a food. One of the most difficult issues confronting chilli cultivation is the requirement for accurate identification of leaf diseases. Leaf diseases have a negative impact on chilli production quality, resulting in significant losses for farmers. Numerous Machine Learning (ML) and Convolution Neural Network (CNN) models have been developed for classifying chilli leaf diseases under uniform background and uncomplicated leaf conditions, with an average classification accuracy achieved. However, a diseased leaf usually grows alongside a cluster of other leaves, making it difficult to classify the disease. It will be easier for farmers if there is a reliable model that can classify a chilli leaf disease in a cluster of leaves. The aim of this study was to propose a model for classifying chilli leaf disease from both a uniform background and a complex cluster of leaves. Images of diseased chilli leaves are acquired using a low-cost Kinect camera, which include discoloration, grey spots, and leaf curling. The different types of chilli leaf disease are then classified using an improved ShuffleNet CNN model. With a classification accuracy of 99.82%, the proposed model outperformed the other existing models.