了解一系列排放途径的模式缩放误差

Christopher D. Wells, L. Jackson, A. Maycock, P. Forster
{"title":"了解一系列排放途径的模式缩放误差","authors":"Christopher D. Wells, L. Jackson, A. Maycock, P. Forster","doi":"10.5194/esd-14-817-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The regional climate impacts of hypothetical future emissions scenarios can be estimated by combining Earth system model simulations with a linear pattern scaling model such as MESMER (Modular Earth System Model Emulator with spatially Resolved output), which uses estimated patterns of the local response per degree of global temperature change. Here we use the mean trend component of MESMER to emulate the regional pattern of the surface temperature response based on historical single-forcer and future Shared Socioeconomic Pathway (SSP) CMIP6 (Coupled Model Intercomparison Project Phase 6) simulations. Errors in the emulations for selected target scenarios (SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) are decomposed into two components, namely (1) the differences in scaling patterns between scenarios as a consequence of varying combinations of external forcings and (2) the intrinsic time series differences between the local and global responses in the target scenario. The time series error is relatively small for high-emissions scenarios, contributing around 20 % of the total error, but is similar in magnitude to the pattern error for lower-emissions scenarios. This irreducible time series error limits the efficacy of linear pattern scaling for emulating strong mitigation pathways and reduces the dependence on the predictor pattern used. The results help guide the choice of predictor scenarios for simple climate models and where to target for the introduction of other dependent variables beyond global surface temperature into pattern scaling models.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Understanding pattern scaling errors across a range of emissions pathways\",\"authors\":\"Christopher D. Wells, L. Jackson, A. Maycock, P. Forster\",\"doi\":\"10.5194/esd-14-817-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The regional climate impacts of hypothetical future emissions scenarios can be estimated by combining Earth system model simulations with a linear pattern scaling model such as MESMER (Modular Earth System Model Emulator with spatially Resolved output), which uses estimated patterns of the local response per degree of global temperature change. Here we use the mean trend component of MESMER to emulate the regional pattern of the surface temperature response based on historical single-forcer and future Shared Socioeconomic Pathway (SSP) CMIP6 (Coupled Model Intercomparison Project Phase 6) simulations. Errors in the emulations for selected target scenarios (SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) are decomposed into two components, namely (1) the differences in scaling patterns between scenarios as a consequence of varying combinations of external forcings and (2) the intrinsic time series differences between the local and global responses in the target scenario. The time series error is relatively small for high-emissions scenarios, contributing around 20 % of the total error, but is similar in magnitude to the pattern error for lower-emissions scenarios. This irreducible time series error limits the efficacy of linear pattern scaling for emulating strong mitigation pathways and reduces the dependence on the predictor pattern used. The results help guide the choice of predictor scenarios for simple climate models and where to target for the introduction of other dependent variables beyond global surface temperature into pattern scaling models.\\n\",\"PeriodicalId\":92775,\"journal\":{\"name\":\"Earth system dynamics : ESD\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth system dynamics : ESD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/esd-14-817-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-14-817-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要假设的未来排放情景的区域气候影响可以通过将地球系统模型模拟与线性模式缩放模型相结合来估计,例如MESMER(具有空间分辨率输出的模块化地球系统模型模拟器),该模型使用每度全球温度变化的局部响应的估计模式。在这里,我们使用MESMER的平均趋势分量来模拟基于历史单力和未来共享社会经济路径(SSP)CMIP6(耦合模型相互比较项目第6阶段)模拟的地表温度响应的区域模式。所选目标场景(SSP1–1.9、SSP1–2.6、SSP2–4.5、SSP3–7.0和SSP5–8.5)模拟中的错误被分解为两个部分,即(1)由于外部强迫的不同组合而导致的场景之间的缩放模式差异,以及(2)目标场景中局部和全局响应之间的内在时间序列差异。对于高排放情景,时间序列误差相对较小,约占20 % 占总误差的百分比,但在幅度上与低排放情景的模式误差相似。这种不可简化的时间序列误差限制了线性模式缩放用于模拟强缓解路径的功效,并减少了对所使用的预测模式的依赖性。这些结果有助于指导简单气候模型的预测情景的选择,以及在模式缩放模型中引入全球地表温度以外的其他因变量的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding pattern scaling errors across a range of emissions pathways
Abstract. The regional climate impacts of hypothetical future emissions scenarios can be estimated by combining Earth system model simulations with a linear pattern scaling model such as MESMER (Modular Earth System Model Emulator with spatially Resolved output), which uses estimated patterns of the local response per degree of global temperature change. Here we use the mean trend component of MESMER to emulate the regional pattern of the surface temperature response based on historical single-forcer and future Shared Socioeconomic Pathway (SSP) CMIP6 (Coupled Model Intercomparison Project Phase 6) simulations. Errors in the emulations for selected target scenarios (SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) are decomposed into two components, namely (1) the differences in scaling patterns between scenarios as a consequence of varying combinations of external forcings and (2) the intrinsic time series differences between the local and global responses in the target scenario. The time series error is relatively small for high-emissions scenarios, contributing around 20 % of the total error, but is similar in magnitude to the pattern error for lower-emissions scenarios. This irreducible time series error limits the efficacy of linear pattern scaling for emulating strong mitigation pathways and reduces the dependence on the predictor pattern used. The results help guide the choice of predictor scenarios for simple climate models and where to target for the introduction of other dependent variables beyond global surface temperature into pattern scaling models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing the estimation of future climate impacts within the United States. Carbon fluxes in spring wheat agroecosystem in India A 20-year satellite-reanalysis-based climatology of extreme precipitation characteristics over the Sinai Peninsula Impacts of anthropogenic water regulation on global riverine dissolved organic carbon transport Working at the limit: a review of thermodynamics and optimality of the Earth system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1