尼日利亚卡诺大都市两家三级医院X射线屏蔽厚度的测定

IF 0.1 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING West African Journal of Radiology Pub Date : 2019-07-01 DOI:10.4103/wajr.wajr_28_18
A. Abubakar, M. Sidi
{"title":"尼日利亚卡诺大都市两家三级医院X射线屏蔽厚度的测定","authors":"A. Abubakar, M. Sidi","doi":"10.4103/wajr.wajr_28_18","DOIUrl":null,"url":null,"abstract":"Background: Radiation dose depends on the total workload (Wtot) which is affected by the number of patients, tube potential, and tube current. Despite the increment in patients visiting the X-ray units under study and X-ray tube revolutions, changes have not been made in the shielding material to suit the current situation. Aims: This study aims to evaluate the thickness of X-ray shielding barriers in two tertiary hospitals in Kano Metropolis using XRAYBAR software. Materials and Methods: This was a prospective, cross-sectional study and was undertaken from March 2017 to October 2017. A purposive sampling technique was employed to select two hospitals out of five. The two were named A and B, respectively. The minimum required thickness in each barrier was determined by XRAYBAR software. Results: The Wtot (workload) for room I, II and III was found to be 199.9, 146, and 149.1 mA-min per week. The shielding barrier thickness required to reduce the unshielded radiation dose to the design dose limit for wall 1, 2, 3, 4, and operating console of the Room I was found to be 17.5, 5.5, 0.2, 0.00, 3.3 cm, that of wall 1, 2, 3, and 4 of room II was found to be 9.1, 3.4, 0.02, 2.3 cm, while for the wall 1, 2, 3, 4, and operating console of room III was found to be 12.3, 4.8, 3.8, 3.2, and 26.5 cm, respectively. Conclusion: The calculated shielding barrier thickness from XRAYBARR code when compared to the design barrier thickness was found to be adequate.","PeriodicalId":29875,"journal":{"name":"West African Journal of Radiology","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Determination of X-ray shielding thickness in two tertiary hospitals in Kano metropolis, Nigeria\",\"authors\":\"A. Abubakar, M. Sidi\",\"doi\":\"10.4103/wajr.wajr_28_18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Radiation dose depends on the total workload (Wtot) which is affected by the number of patients, tube potential, and tube current. Despite the increment in patients visiting the X-ray units under study and X-ray tube revolutions, changes have not been made in the shielding material to suit the current situation. Aims: This study aims to evaluate the thickness of X-ray shielding barriers in two tertiary hospitals in Kano Metropolis using XRAYBAR software. Materials and Methods: This was a prospective, cross-sectional study and was undertaken from March 2017 to October 2017. A purposive sampling technique was employed to select two hospitals out of five. The two were named A and B, respectively. The minimum required thickness in each barrier was determined by XRAYBAR software. Results: The Wtot (workload) for room I, II and III was found to be 199.9, 146, and 149.1 mA-min per week. The shielding barrier thickness required to reduce the unshielded radiation dose to the design dose limit for wall 1, 2, 3, 4, and operating console of the Room I was found to be 17.5, 5.5, 0.2, 0.00, 3.3 cm, that of wall 1, 2, 3, and 4 of room II was found to be 9.1, 3.4, 0.02, 2.3 cm, while for the wall 1, 2, 3, 4, and operating console of room III was found to be 12.3, 4.8, 3.8, 3.2, and 26.5 cm, respectively. Conclusion: The calculated shielding barrier thickness from XRAYBARR code when compared to the design barrier thickness was found to be adequate.\",\"PeriodicalId\":29875,\"journal\":{\"name\":\"West African Journal of Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"West African Journal of Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/wajr.wajr_28_18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"West African Journal of Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/wajr.wajr_28_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 4

摘要

背景:辐射剂量取决于总工作量(Wtot),而总工作量受患者数量、管电位和管电流的影响。尽管访问研究中的X射线装置和X射线管旋转的患者人数有所增加,但屏蔽材料尚未做出改变以适应当前情况。目的:本研究旨在使用XRAYBAR软件评估卡诺大都会两家三级医院的X射线屏蔽屏障厚度。材料和方法:这是一项前瞻性的横断面研究,于2017年3月至2017年10月进行。采用有目的的抽样技术从五家医院中选择两家。这两个分别被命名为A和B。通过XRAYBAR软件确定每个屏障中所需的最小厚度。结果:I、II和III室的Wtot(工作量)分别为199.9、146和149.1 mA min/周。将非屏蔽辐射剂量降低到设计剂量限值所需的屏蔽屏障厚度为17.5、5.5、0.2、0.00、3.3 cm,房间I的墙壁1、2、3和4的厚度为9.1、3.4、0.02、2.3 cm,而房间III的墙壁1,2、3、4和操作台的厚度为12.3、4.8、3.8、3.2,和26.5厘米。结论:与设计屏障厚度相比,XRAYBARR代码计算的屏蔽屏障厚度是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of X-ray shielding thickness in two tertiary hospitals in Kano metropolis, Nigeria
Background: Radiation dose depends on the total workload (Wtot) which is affected by the number of patients, tube potential, and tube current. Despite the increment in patients visiting the X-ray units under study and X-ray tube revolutions, changes have not been made in the shielding material to suit the current situation. Aims: This study aims to evaluate the thickness of X-ray shielding barriers in two tertiary hospitals in Kano Metropolis using XRAYBAR software. Materials and Methods: This was a prospective, cross-sectional study and was undertaken from March 2017 to October 2017. A purposive sampling technique was employed to select two hospitals out of five. The two were named A and B, respectively. The minimum required thickness in each barrier was determined by XRAYBAR software. Results: The Wtot (workload) for room I, II and III was found to be 199.9, 146, and 149.1 mA-min per week. The shielding barrier thickness required to reduce the unshielded radiation dose to the design dose limit for wall 1, 2, 3, 4, and operating console of the Room I was found to be 17.5, 5.5, 0.2, 0.00, 3.3 cm, that of wall 1, 2, 3, and 4 of room II was found to be 9.1, 3.4, 0.02, 2.3 cm, while for the wall 1, 2, 3, 4, and operating console of room III was found to be 12.3, 4.8, 3.8, 3.2, and 26.5 cm, respectively. Conclusion: The calculated shielding barrier thickness from XRAYBARR code when compared to the design barrier thickness was found to be adequate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
West African Journal of Radiology
West African Journal of Radiology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
自引率
0.00%
发文量
0
期刊最新文献
Inner ear computed tomography findings among children with audiometry proven sensorineural hearing loss in a special needs school in South-West, Nigeria Validity of sonographic prediction of birth weight: A study of three algorithms in a cohort of healthy pregnant women of Yoruba descent in a suburb of Lagos state, Southwest Nigeria Multiparametric differentiation of intracranial central nervous system lymphoma and high-grade glioma using diffusion-, perfusion-, susceptibility-weighted magnetic resonance imaging, and spectroscopy Cerebellar pilocytic astrocytoma: Unusual presentation in a 3-year-old girl with classical imaging features Contrast radiographic anatomy of the gastrointestinal tract of white-bellied pangolin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1