基于深层感知器和计算机视觉技术的桥梁影响面识别

IF 5.7 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Structural Health Monitoring-An International Journal Pub Date : 2023-08-29 DOI:10.1177/14759217231190543
Xudong Jian, Ye Xia, E. Chatzi, Zhilu Lai
{"title":"基于深层感知器和计算机视觉技术的桥梁影响面识别","authors":"Xudong Jian, Ye Xia, E. Chatzi, Zhilu Lai","doi":"10.1177/14759217231190543","DOIUrl":null,"url":null,"abstract":"The identification of influence surfaces (ISs) for bridge structures offers an efficient tool for understanding traffic loads and assessing structural conditions. In general, ISs of a real bridge can be identified through calibration tests using calibration vehicles with known weights moving across the bridge. However, the existing methods face difficulties in considering comprehensive factors, such as the lateral movement, speed variation, and track width of the calibration vehicle, as well as bridge dynamic effects. These factors inevitably introduce inaccuracies into the task of identification. To comprehensively consider these factors, this study proposes a deep learning-based method that combines deep multilayer perceptrons (MLPs) and computer vision (CV), with deep MLP adopted to identify bridge ISs and CV employed to obtain the position coordinates of the calibration vehicle’s wheels. A series of numerical simulations and field experiments on an in-service bridge were carried out to validate the proposed framework and compare it against a broadly established method to such an end—Quilligan’s method. The results show the accuracy, robustness, and practicability of the proposed framework.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge influence surface identification using a deep multilayer perceptron and computer vision techniques\",\"authors\":\"Xudong Jian, Ye Xia, E. Chatzi, Zhilu Lai\",\"doi\":\"10.1177/14759217231190543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of influence surfaces (ISs) for bridge structures offers an efficient tool for understanding traffic loads and assessing structural conditions. In general, ISs of a real bridge can be identified through calibration tests using calibration vehicles with known weights moving across the bridge. However, the existing methods face difficulties in considering comprehensive factors, such as the lateral movement, speed variation, and track width of the calibration vehicle, as well as bridge dynamic effects. These factors inevitably introduce inaccuracies into the task of identification. To comprehensively consider these factors, this study proposes a deep learning-based method that combines deep multilayer perceptrons (MLPs) and computer vision (CV), with deep MLP adopted to identify bridge ISs and CV employed to obtain the position coordinates of the calibration vehicle’s wheels. A series of numerical simulations and field experiments on an in-service bridge were carried out to validate the proposed framework and compare it against a broadly established method to such an end—Quilligan’s method. The results show the accuracy, robustness, and practicability of the proposed framework.\",\"PeriodicalId\":51184,\"journal\":{\"name\":\"Structural Health Monitoring-An International Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring-An International Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217231190543\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231190543","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

桥梁结构影响面的识别为理解交通荷载和评估结构状况提供了一种有效的工具。一般来说,真实桥梁的ISs可以通过使用已知重量的校准车辆在桥梁上行驶的校准测试来确定。然而,现有方法难以考虑标定车辆的横向运动、速度变化、轨道宽度等综合因素以及桥梁动力效应。这些因素不可避免地会给识别任务带来不准确性。为了综合考虑这些因素,本研究提出了一种基于深度学习的方法,该方法将深度多层感知器(MLP)与计算机视觉(CV)相结合,利用深度多层感知器识别桥梁ISs,利用CV获取标定车辆车轮位置坐标。通过一系列的数值模拟和在用桥梁的现场试验,验证了所提出的框架,并将其与广泛建立的方法进行了比较。结果表明,该框架具有较好的准确性、鲁棒性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridge influence surface identification using a deep multilayer perceptron and computer vision techniques
The identification of influence surfaces (ISs) for bridge structures offers an efficient tool for understanding traffic loads and assessing structural conditions. In general, ISs of a real bridge can be identified through calibration tests using calibration vehicles with known weights moving across the bridge. However, the existing methods face difficulties in considering comprehensive factors, such as the lateral movement, speed variation, and track width of the calibration vehicle, as well as bridge dynamic effects. These factors inevitably introduce inaccuracies into the task of identification. To comprehensively consider these factors, this study proposes a deep learning-based method that combines deep multilayer perceptrons (MLPs) and computer vision (CV), with deep MLP adopted to identify bridge ISs and CV employed to obtain the position coordinates of the calibration vehicle’s wheels. A series of numerical simulations and field experiments on an in-service bridge were carried out to validate the proposed framework and compare it against a broadly established method to such an end—Quilligan’s method. The results show the accuracy, robustness, and practicability of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.80
自引率
12.10%
发文量
181
审稿时长
4.8 months
期刊介绍: Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.
期刊最新文献
Oligomerization and positive feedback on membrane recruitment encode dynamically stable PAR-3 asymmetries in the C. elegans zygote. Combination of active sensing method and data-driven approach for rubber aging detection Distributed fiber optic strain sensing for crack detection with Brillouin shift spectrum back analysis An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening Hierarchical verification and validation in a forward model-driven structural health monitoring strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1