桃树GRF基因家族的全基因组分析及表达谱分析

IF 2.6 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Interactions Pub Date : 2022-03-06 DOI:10.1080/17429145.2022.2045370
Li Liu, Xiu-jie Li, Bo Li, MingYue Sun, Shao-xuan Li
{"title":"桃树GRF基因家族的全基因组分析及表达谱分析","authors":"Li Liu, Xiu-jie Li, Bo Li, MingYue Sun, Shao-xuan Li","doi":"10.1080/17429145.2022.2045370","DOIUrl":null,"url":null,"abstract":"ABSTRACT Growth-regulating factors (GRFs) are plant-specific transcription factors with vital roles in multiple biological processes. Although GRFs have been identified in various plant species, a comprehensive analysis of GRF genes in peach (Prunus persica) has not yet been reported. In this study, 10 PpGRF genes distributed on 6 chromosomes were identified in peach genome and their properties were analyzed systematically. Expression pattern analysis suggested that most PpGRFs were preferentially expressed in young tissues. Multiple types of cis-elements were observed in PpGRF promoters, and PpGRFs positively respond to ultraviolet B-rays (UVB) and gibberellin (GA) treatments at the transcriptional level. Also, the content of gibberellic acid 3 (GA3) and indole-3-acetic acid (IAA) changed significantly after UVB irradiation. PpGRF 3, 4, 5, 6, 7, 9 and 10 positive responses to UVB and GA3 signals. The evolutionary patterns and expression profiles of PpGRFs detected in this study increase understanding of the important roles in peach.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Genome-wide analysis of the GRF gene family and their expression profiling in peach (Prunus persica)\",\"authors\":\"Li Liu, Xiu-jie Li, Bo Li, MingYue Sun, Shao-xuan Li\",\"doi\":\"10.1080/17429145.2022.2045370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Growth-regulating factors (GRFs) are plant-specific transcription factors with vital roles in multiple biological processes. Although GRFs have been identified in various plant species, a comprehensive analysis of GRF genes in peach (Prunus persica) has not yet been reported. In this study, 10 PpGRF genes distributed on 6 chromosomes were identified in peach genome and their properties were analyzed systematically. Expression pattern analysis suggested that most PpGRFs were preferentially expressed in young tissues. Multiple types of cis-elements were observed in PpGRF promoters, and PpGRFs positively respond to ultraviolet B-rays (UVB) and gibberellin (GA) treatments at the transcriptional level. Also, the content of gibberellic acid 3 (GA3) and indole-3-acetic acid (IAA) changed significantly after UVB irradiation. PpGRF 3, 4, 5, 6, 7, 9 and 10 positive responses to UVB and GA3 signals. The evolutionary patterns and expression profiles of PpGRFs detected in this study increase understanding of the important roles in peach.\",\"PeriodicalId\":16830,\"journal\":{\"name\":\"Journal of Plant Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17429145.2022.2045370\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2045370","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

生长调节因子(GRFs)是植物特异性转录因子,在多种生物过程中发挥重要作用。虽然GRF基因已在多种植物中被发现,但对桃(Prunus persica)中GRF基因的全面分析尚未报道。本研究从桃树基因组中鉴定出分布在6条染色体上的10个PpGRF基因,并对其特性进行了系统分析。表达模式分析表明,大多数PpGRFs优先在幼龄组织中表达。PpGRF启动子中存在多种类型的顺式元件,并且PpGRF在转录水平上对紫外线b射线(UVB)和赤霉素(gibberellin, GA)处理有正向响应。UVB辐照后,赤霉素酸3 (GA3)和吲哚-3-乙酸(IAA)含量也发生了显著变化。ppgrf3、4、5、6、7、9和10对UVB和GA3信号有响应。本研究检测到的PpGRFs的进化模式和表达谱增加了对桃子重要作用的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide analysis of the GRF gene family and their expression profiling in peach (Prunus persica)
ABSTRACT Growth-regulating factors (GRFs) are plant-specific transcription factors with vital roles in multiple biological processes. Although GRFs have been identified in various plant species, a comprehensive analysis of GRF genes in peach (Prunus persica) has not yet been reported. In this study, 10 PpGRF genes distributed on 6 chromosomes were identified in peach genome and their properties were analyzed systematically. Expression pattern analysis suggested that most PpGRFs were preferentially expressed in young tissues. Multiple types of cis-elements were observed in PpGRF promoters, and PpGRFs positively respond to ultraviolet B-rays (UVB) and gibberellin (GA) treatments at the transcriptional level. Also, the content of gibberellic acid 3 (GA3) and indole-3-acetic acid (IAA) changed significantly after UVB irradiation. PpGRF 3, 4, 5, 6, 7, 9 and 10 positive responses to UVB and GA3 signals. The evolutionary patterns and expression profiles of PpGRFs detected in this study increase understanding of the important roles in peach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
期刊最新文献
Transcriptome analysis of maize resistance to Fusarium verticillioides Biochar modulates the antioxidant system and hormonal signaling in tobacco under continuous-cropping conditions Clarifying the effects of potential evapotranspiration and soil moisture on transpiration in secondary forests of birch in semi-arid regions of China Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato Root endophytic Phialocephala fortinii and Talaromyces verruculosus enhance growth and affect heavy metal tolerance of Miscanthus sinensis Andersson growing naturally at a mine site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1