Marco Antonio Villegas Olguín, M. C. L. Fuente, A. Mendoza, Antonio Juárez Maldonado, Alberto Sandoval Rangel, E. Cusimamani
{"title":"水分胁迫下嫁接甜瓜的商品品质和营养品质","authors":"Marco Antonio Villegas Olguín, M. C. L. Fuente, A. Mendoza, Antonio Juárez Maldonado, Alberto Sandoval Rangel, E. Cusimamani","doi":"10.17221/139/2019-HORTSCI","DOIUrl":null,"url":null,"abstract":"Water stress decreases the quality of fruit by generating reactive oxygen species. Grafting is a technique that can improve the efficiency of crop water usage. This work was performed in order to assess the effect of different water stresses on the commercial and nutraceutical quality of a melon fruit. Cantaloupe melon plants, grown under shade houses were grafted onto a creole pumpkin rootstock and grown with different water stresses (20, 30, and 40 kPa). The grafted melon plants under 30-kPa water stress (G30) showed greater fruit firmness and increased catalase activity. The G30 fruits showed an increase in GPX activity of up to 80% over the non-grafted plants. The GSH was higher in fruits subjected to the 40-kPa water tension. The superoxide dismutase showed a 15% greater inhibition in the fruits from the non-grafted plants. At higher water tensions, the DPPH antioxidant activity decreased, while the vitamin C content increased.","PeriodicalId":13110,"journal":{"name":"Horticultural Science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/139/2019-HORTSCI","citationCount":"2","resultStr":"{\"title\":\"Commercial and nutraceutical quality of grafted melon cultivated under hydric stress\",\"authors\":\"Marco Antonio Villegas Olguín, M. C. L. Fuente, A. Mendoza, Antonio Juárez Maldonado, Alberto Sandoval Rangel, E. Cusimamani\",\"doi\":\"10.17221/139/2019-HORTSCI\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water stress decreases the quality of fruit by generating reactive oxygen species. Grafting is a technique that can improve the efficiency of crop water usage. This work was performed in order to assess the effect of different water stresses on the commercial and nutraceutical quality of a melon fruit. Cantaloupe melon plants, grown under shade houses were grafted onto a creole pumpkin rootstock and grown with different water stresses (20, 30, and 40 kPa). The grafted melon plants under 30-kPa water stress (G30) showed greater fruit firmness and increased catalase activity. The G30 fruits showed an increase in GPX activity of up to 80% over the non-grafted plants. The GSH was higher in fruits subjected to the 40-kPa water tension. The superoxide dismutase showed a 15% greater inhibition in the fruits from the non-grafted plants. At higher water tensions, the DPPH antioxidant activity decreased, while the vitamin C content increased.\",\"PeriodicalId\":13110,\"journal\":{\"name\":\"Horticultural Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17221/139/2019-HORTSCI\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/139/2019-HORTSCI\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/139/2019-HORTSCI","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
Commercial and nutraceutical quality of grafted melon cultivated under hydric stress
Water stress decreases the quality of fruit by generating reactive oxygen species. Grafting is a technique that can improve the efficiency of crop water usage. This work was performed in order to assess the effect of different water stresses on the commercial and nutraceutical quality of a melon fruit. Cantaloupe melon plants, grown under shade houses were grafted onto a creole pumpkin rootstock and grown with different water stresses (20, 30, and 40 kPa). The grafted melon plants under 30-kPa water stress (G30) showed greater fruit firmness and increased catalase activity. The G30 fruits showed an increase in GPX activity of up to 80% over the non-grafted plants. The GSH was higher in fruits subjected to the 40-kPa water tension. The superoxide dismutase showed a 15% greater inhibition in the fruits from the non-grafted plants. At higher water tensions, the DPPH antioxidant activity decreased, while the vitamin C content increased.
期刊介绍:
The journal publishes results of basic and applied research from all areas of horticulture, fruit-growing, vegetable-growing, wine-making and viticulture, floriculture, ornamental gardening, garden and landscape architecture, concerning plants that are grown under the conditions of European temperate zone, or field plants that are considered as horticultural cultures. Original scientific papers, short communications and review articles are published in the journal. Papers are published in English (British spelling).