{"title":"齐次矩阵锥上的线性优化","authors":"L. Tunçel, L. Vandenberghe","doi":"10.1017/S0962492922000113","DOIUrl":null,"url":null,"abstract":"A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone. Cones that are homogeneous and self-dual are called symmetric. Conic optimization problems over symmetric cones have been extensively studied, particularly in the literature on interior-point algorithms, and as the foundation of modelling tools for convex optimization. In this paper we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. Chordal sparsity guarantees that positive define matrices in the cone have zero-fill Cholesky factorizations. The stronger properties that make the cone homogeneous guarantee that the inverse Cholesky factors have the same zero-fill pattern. We describe transitive subsets of the cone automorphism groups, and important properties of the composition of log-det barriers with the automorphisms. Next, we consider extensions to linear slices of the positive semidefinite cone, and review conditions that make such cones homogeneous. An important example is the matrix norm cone, the epigraph of a quadratic-over-linear matrix function. The properties of homogeneous sparse matrix cones are shown to extend to this more general class of homogeneous matrix cones. We then give an overview of the algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous structure in primal–dual symmetric interior-point methods, contrasting this with the well-developed algorithms for symmetric cones that exploit the strong properties of self-scaled barriers, and with symmetric primal–dual methods for general convex cones.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"32 1","pages":"675 - 747"},"PeriodicalIF":16.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear optimization over homogeneous matrix cones\",\"authors\":\"L. Tunçel, L. Vandenberghe\",\"doi\":\"10.1017/S0962492922000113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone. Cones that are homogeneous and self-dual are called symmetric. Conic optimization problems over symmetric cones have been extensively studied, particularly in the literature on interior-point algorithms, and as the foundation of modelling tools for convex optimization. In this paper we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. Chordal sparsity guarantees that positive define matrices in the cone have zero-fill Cholesky factorizations. The stronger properties that make the cone homogeneous guarantee that the inverse Cholesky factors have the same zero-fill pattern. We describe transitive subsets of the cone automorphism groups, and important properties of the composition of log-det barriers with the automorphisms. Next, we consider extensions to linear slices of the positive semidefinite cone, and review conditions that make such cones homogeneous. An important example is the matrix norm cone, the epigraph of a quadratic-over-linear matrix function. The properties of homogeneous sparse matrix cones are shown to extend to this more general class of homogeneous matrix cones. We then give an overview of the algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous structure in primal–dual symmetric interior-point methods, contrasting this with the well-developed algorithms for symmetric cones that exploit the strong properties of self-scaled barriers, and with symmetric primal–dual methods for general convex cones.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"32 1\",\"pages\":\"675 - 747\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0962492922000113\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492922000113","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone. Cones that are homogeneous and self-dual are called symmetric. Conic optimization problems over symmetric cones have been extensively studied, particularly in the literature on interior-point algorithms, and as the foundation of modelling tools for convex optimization. In this paper we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. Chordal sparsity guarantees that positive define matrices in the cone have zero-fill Cholesky factorizations. The stronger properties that make the cone homogeneous guarantee that the inverse Cholesky factors have the same zero-fill pattern. We describe transitive subsets of the cone automorphism groups, and important properties of the composition of log-det barriers with the automorphisms. Next, we consider extensions to linear slices of the positive semidefinite cone, and review conditions that make such cones homogeneous. An important example is the matrix norm cone, the epigraph of a quadratic-over-linear matrix function. The properties of homogeneous sparse matrix cones are shown to extend to this more general class of homogeneous matrix cones. We then give an overview of the algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous structure in primal–dual symmetric interior-point methods, contrasting this with the well-developed algorithms for symmetric cones that exploit the strong properties of self-scaled barriers, and with symmetric primal–dual methods for general convex cones.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.