具有双参数指数族响应的联合均值和离散模型中的半参数光滑样条:贝叶斯视角

Héctor Zárate, Edilberto Cepeda
{"title":"具有双参数指数族响应的联合均值和离散模型中的半参数光滑样条:贝叶斯视角","authors":"Héctor Zárate, Edilberto Cepeda","doi":"10.19139/SOIC-2310-5070-671","DOIUrl":null,"url":null,"abstract":"This article extends the fusion among various statistical methods to estimate the mean and variance functions in heteroscedastic semiparametric models when the response variable comes from a two-parameter exponential family distribution. We rely on the natural connection among smoothing methods that use basis functions with penalization, mixed models and a Bayesian Markov Chain sampling simulation methodology. The significance and implications of our strategy lies in its potential to contribute to a simple and unified computational methodology that takes into account the factors that affect the variability in the responses, which in turn is important for an efficient estimation and correct inference of mean parameters without the specification of fully parametric models. An extensive simulation study investigates the performance of the estimates. Finally, an application using the Light Detection and Ranging technique, LIDAR, data highlights the merits of our approach.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"9 1","pages":"351-367"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semiparametric Smoothing Spline in Joint Mean and Dispersion Models with Responses from the Biparametric Exponential Family: A Bayesian Perspective\",\"authors\":\"Héctor Zárate, Edilberto Cepeda\",\"doi\":\"10.19139/SOIC-2310-5070-671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article extends the fusion among various statistical methods to estimate the mean and variance functions in heteroscedastic semiparametric models when the response variable comes from a two-parameter exponential family distribution. We rely on the natural connection among smoothing methods that use basis functions with penalization, mixed models and a Bayesian Markov Chain sampling simulation methodology. The significance and implications of our strategy lies in its potential to contribute to a simple and unified computational methodology that takes into account the factors that affect the variability in the responses, which in turn is important for an efficient estimation and correct inference of mean parameters without the specification of fully parametric models. An extensive simulation study investigates the performance of the estimates. Finally, an application using the Light Detection and Ranging technique, LIDAR, data highlights the merits of our approach.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"9 1\",\"pages\":\"351-367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/SOIC-2310-5070-671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将各种统计方法的融合推广到响应变量来自双参数指数族分布的异方差半参数模型中均值和方差函数的估计。我们依赖于使用带有惩罚的基函数、混合模型和贝叶斯马尔可夫链抽样模拟方法的平滑方法之间的自然联系。我们的策略的意义和意义在于,它有可能为一种简单而统一的计算方法做出贡献,这种方法考虑了影响响应可变性的因素,这反过来对于在没有全参数模型规范的情况下有效估计和正确推断平均参数非常重要。一个广泛的模拟研究调查了估计的性能。最后,使用光探测和测距技术,激光雷达,数据的应用突出了我们的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semiparametric Smoothing Spline in Joint Mean and Dispersion Models with Responses from the Biparametric Exponential Family: A Bayesian Perspective
This article extends the fusion among various statistical methods to estimate the mean and variance functions in heteroscedastic semiparametric models when the response variable comes from a two-parameter exponential family distribution. We rely on the natural connection among smoothing methods that use basis functions with penalization, mixed models and a Bayesian Markov Chain sampling simulation methodology. The significance and implications of our strategy lies in its potential to contribute to a simple and unified computational methodology that takes into account the factors that affect the variability in the responses, which in turn is important for an efficient estimation and correct inference of mean parameters without the specification of fully parametric models. An extensive simulation study investigates the performance of the estimates. Finally, an application using the Light Detection and Ranging technique, LIDAR, data highlights the merits of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1