{"title":"具有超零和信息截尾的两个独立竞争风险下的递归事件数据的半参数模型","authors":"Ali Sharifi, R. Hashemi","doi":"10.1007/s13171-021-00270-3","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":46728,"journal":{"name":"Sankhya-Series A-Mathematical Statistics and Probability","volume":"85 1","pages":"633-650"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric Model for Recurrent Event Data Under Two Independent Competing Risks with Excess Zero and Informative Censoring\",\"authors\":\"Ali Sharifi, R. Hashemi\",\"doi\":\"10.1007/s13171-021-00270-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":46728,\"journal\":{\"name\":\"Sankhya-Series A-Mathematical Statistics and Probability\",\"volume\":\"85 1\",\"pages\":\"633-650\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sankhya-Series A-Mathematical Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13171-021-00270-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sankhya-Series A-Mathematical Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13171-021-00270-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
期刊介绍:
Sankhya, Series A, publishes original, high quality research articles in various areas of modern statistics, such as probability, theoretical statistics, mathematical statistics and machine learning. The areas are interpreted in a broad sense. Articles are judged on the basis of their novelty and technical correctness.
Sankhya, Series B, primarily covers applied and interdisciplinary statistics including data sciences. Applied articles should preferably include analysis of original data of broad interest, novel applications of methodology and development of methods and techniques of immediate practical use. Authoritative reviews and comprehensive discussion articles in areas of vigorous current research are also welcome.