基于数据的学生效率和表现聚类分析方法

Tallal Omar, Abdullah M. Alzahrani, M. Zohdy
{"title":"基于数据的学生效率和表现聚类分析方法","authors":"Tallal Omar, Abdullah M. Alzahrani, M. Zohdy","doi":"10.4236/jdaip.2020.83010","DOIUrl":null,"url":null,"abstract":"The academic community is currently confronting some challenges in terms of analyzing and evaluating the progress of a student’s academic performance. In the real world, classifying the performance of the students is a scientifically challenging task. Recently, some studies apply cluster analysis for evaluating the students’ results and utilize statistical techniques to part their score in regard to student’s performance. This approach, however, is not efficient. In this study, we combine two techniques, namely, k-mean and elbow clustering algorithm to evaluate the student’s performance. Based on this combination, the results of performance will be more accurate in analyzing and evaluating the progress of the student’s performance. In this study, the methodology has been implemented to define the diverse fascinating model taking the student test scores.","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Clustering Approach for Analyzing the Student’s Efficiency and Performance Based on Data\",\"authors\":\"Tallal Omar, Abdullah M. Alzahrani, M. Zohdy\",\"doi\":\"10.4236/jdaip.2020.83010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The academic community is currently confronting some challenges in terms of analyzing and evaluating the progress of a student’s academic performance. In the real world, classifying the performance of the students is a scientifically challenging task. Recently, some studies apply cluster analysis for evaluating the students’ results and utilize statistical techniques to part their score in regard to student’s performance. This approach, however, is not efficient. In this study, we combine two techniques, namely, k-mean and elbow clustering algorithm to evaluate the student’s performance. Based on this combination, the results of performance will be more accurate in analyzing and evaluating the progress of the student’s performance. In this study, the methodology has been implemented to define the diverse fascinating model taking the student test scores.\",\"PeriodicalId\":71434,\"journal\":{\"name\":\"数据分析和信息处理(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数据分析和信息处理(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/jdaip.2020.83010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2020.83010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

学术界目前在分析和评估学生学习成绩的进展方面面临着一些挑战。在现实世界中,对学生的表现进行分类是一项具有科学挑战性的任务。最近,一些研究应用聚类分析来评估学生的成绩,并利用统计技术根据学生的表现来划分他们的分数。然而,这种方法并不有效。在这项研究中,我们结合了两种技术,即k-means和肘部聚类算法来评估学生的表现。基于这种组合,成绩的结果将更准确地分析和评估学生的成绩进展。在这项研究中,采用该方法来定义学生考试成绩的多样化迷人模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering Approach for Analyzing the Student’s Efficiency and Performance Based on Data
The academic community is currently confronting some challenges in terms of analyzing and evaluating the progress of a student’s academic performance. In the real world, classifying the performance of the students is a scientifically challenging task. Recently, some studies apply cluster analysis for evaluating the students’ results and utilize statistical techniques to part their score in regard to student’s performance. This approach, however, is not efficient. In this study, we combine two techniques, namely, k-mean and elbow clustering algorithm to evaluate the student’s performance. Based on this combination, the results of performance will be more accurate in analyzing and evaluating the progress of the student’s performance. In this study, the methodology has been implemented to define the diverse fascinating model taking the student test scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
91
期刊最新文献
A Hybrid Neural Network Model Based on Transfer Learning for Forecasting Forex Market Enhancing Police Officers’ Cybercrime Investigation Skills Using a Checklist Tool A Sufficient Statistical Test for Dynamic Stability Lung Cancer Prediction from Elvira Biomedical Dataset Using Ensemble Classifier with Principal Component Analysis Modelling Key Population Attrition in the HIV and AIDS Programme in Kenya Using Random Survival Forests with Synthetic Minority Oversampling Technique-Nominal Continuous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1