北美东部边缘递进裂陷和大陆分裂时期纽瓦克盆地碎屑锆石和磷灰石U-Pb物源及排水演化

IF 1.7 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geosphere Pub Date : 2023-08-18 DOI:10.1130/ges02610.1
Zachary Foster-baril, D. Stockli
{"title":"北美东部边缘递进裂陷和大陆分裂时期纽瓦克盆地碎屑锆石和磷灰石U-Pb物源及排水演化","authors":"Zachary Foster-baril, D. Stockli","doi":"10.1130/ges02610.1","DOIUrl":null,"url":null,"abstract":"Mesozoic rift basins of the Eastern North American Margin (ENAM) span from Florida in the United States to the Grand Banks of Canada and formed during progressive extension prior to continental breakup and the opening of the north-central Atlantic. The syn-rift strata from all the individual basins, lumped along the entire margin into the Newark Supergroup, are dominated by fluvial conglomerate and sandstone, lacustrine siltstone, mudstone, and abundant alluvial conglomerate and sandstone lithofacies. Deposition of these syn-rift sedimentary rocks was accommodated in a series of half grabens and subsidiary full grabens situated within the Permo-Carboniferous Appalachian orogen. The Mesozoic ENAM is commonly depicted as a magma-rich continental rift margin, with magmatism (Central Atlantic magmatic province [CAMP]) driving continental breakup. However, the southern portion of the ENAM shows evidence of magmatic breakup (e.g., seaward-dipping reflectors), and rifting and crustal thinning appeared to start ~30 m.y. prior to CAMP emplacement in the Jurassic. This study provides extensive new detrital zircon and apatite U-Pb provenance data to determine the provenance and reconstruct the paleodrainages of the Newark Basin during progressive rifting and magmatic breakup and the implications for the overall rift configuration and asymmetry during progressive rifting along the ENAM rift margin. Detailed new detrital zircon (N = 21; n = 3093) and apatite (N = 4; n = 559) U-Pb results from sandstone outcrop and core samples from the Newark Basin indicate a distinct provenance shift, with relatively older Carnian syn-rift strata predominately sourced from the hanging wall of the basin bounding fault in the east while relatively younger Norian strata were regionally sourced from both the hanging wall and footwall. The syn-rift strata at the Triassic-Jurassic boundary were sourced from the hanging wall before a transition to local footwall terranes. These results suggest two major provenance changes during progressive rifting—the first occurring during Carnian crustal necking and rift flank uplift as predicted by recent numerical models and the second occurring at the onset of the Jurassic due to regional and local thermal uplift during CAMP magmatism as seen along other magma-rich margins, such as the North Atlantic and the southern portion of the South Atlantic margin.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detrital zircon and apatite U-Pb provenance and drainage evolution of the Newark Basin during progressive rifting and continental breakup along the Eastern North American Margin, USA\",\"authors\":\"Zachary Foster-baril, D. Stockli\",\"doi\":\"10.1130/ges02610.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesozoic rift basins of the Eastern North American Margin (ENAM) span from Florida in the United States to the Grand Banks of Canada and formed during progressive extension prior to continental breakup and the opening of the north-central Atlantic. The syn-rift strata from all the individual basins, lumped along the entire margin into the Newark Supergroup, are dominated by fluvial conglomerate and sandstone, lacustrine siltstone, mudstone, and abundant alluvial conglomerate and sandstone lithofacies. Deposition of these syn-rift sedimentary rocks was accommodated in a series of half grabens and subsidiary full grabens situated within the Permo-Carboniferous Appalachian orogen. The Mesozoic ENAM is commonly depicted as a magma-rich continental rift margin, with magmatism (Central Atlantic magmatic province [CAMP]) driving continental breakup. However, the southern portion of the ENAM shows evidence of magmatic breakup (e.g., seaward-dipping reflectors), and rifting and crustal thinning appeared to start ~30 m.y. prior to CAMP emplacement in the Jurassic. This study provides extensive new detrital zircon and apatite U-Pb provenance data to determine the provenance and reconstruct the paleodrainages of the Newark Basin during progressive rifting and magmatic breakup and the implications for the overall rift configuration and asymmetry during progressive rifting along the ENAM rift margin. Detailed new detrital zircon (N = 21; n = 3093) and apatite (N = 4; n = 559) U-Pb results from sandstone outcrop and core samples from the Newark Basin indicate a distinct provenance shift, with relatively older Carnian syn-rift strata predominately sourced from the hanging wall of the basin bounding fault in the east while relatively younger Norian strata were regionally sourced from both the hanging wall and footwall. The syn-rift strata at the Triassic-Jurassic boundary were sourced from the hanging wall before a transition to local footwall terranes. These results suggest two major provenance changes during progressive rifting—the first occurring during Carnian crustal necking and rift flank uplift as predicted by recent numerical models and the second occurring at the onset of the Jurassic due to regional and local thermal uplift during CAMP magmatism as seen along other magma-rich margins, such as the North Atlantic and the southern portion of the South Atlantic margin.\",\"PeriodicalId\":55100,\"journal\":{\"name\":\"Geosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/ges02610.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02610.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

北美东部边缘(ENAM)的中生代裂谷盆地从美国佛罗里达州一直延伸到加拿大大银行,形成于大陆解体和大西洋中北部开放之前的渐进伸展过程中。所有单独盆地的同裂谷地层,沿整个边缘集中在纽瓦克超群中,以河流砾岩和砂岩、湖相粉砂岩、泥岩以及丰富的冲积砾岩和砂岩岩相为主。这些同裂谷沉积岩的沉积被容纳在位于二叠纪-阿巴拉契亚造山带内的一系列半地堑和次级全地堑中。中生代ENAM通常被描述为富含岩浆的大陆裂谷边缘,岩浆作用(中大西洋岩浆区[CAP])驱动了大陆破裂。然而,ENAM的南部显示出岩浆破裂的证据(例如,向海倾斜的反射器),裂谷作用和地壳变薄似乎在侏罗纪CAMP侵位前约30 m.y.开始。本研究提供了大量新的碎屑锆石和磷灰石U-Pb物源数据,以确定物源并重建纽瓦克盆地在渐进裂谷作用和岩浆破裂期间的古排水系统,以及对沿ENAM裂谷边缘渐进裂谷作用期间的整体裂谷构形和不对称性的影响。纽瓦克盆地砂岩露头和岩芯样本的详细新碎屑锆石(N=21;N=3093)和磷灰石(N=4;N=559)U-Pb结果表明,物源发生了明显的变化,相对较老的卡尼阶同裂谷地层主要来源于东部盆地边界断层的上盘,而相对较年轻的诺里阶地层则区域性地来源于上盘和下盘。三叠纪-侏罗纪边界的同裂谷地层来源于向局部下盘地体过渡之前的上盘。这些结果表明,在渐进裂谷作用期间,有两个主要的物源变化——第一个发生在卡尼期地壳颈缩和裂谷侧翼隆起期间,正如最近的数值模型所预测的那样,第二个发生在侏罗纪开始时,这是由于CAMP岩浆作用期间的区域和局部热隆起,例如北大西洋和南大西洋边缘的南部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detrital zircon and apatite U-Pb provenance and drainage evolution of the Newark Basin during progressive rifting and continental breakup along the Eastern North American Margin, USA
Mesozoic rift basins of the Eastern North American Margin (ENAM) span from Florida in the United States to the Grand Banks of Canada and formed during progressive extension prior to continental breakup and the opening of the north-central Atlantic. The syn-rift strata from all the individual basins, lumped along the entire margin into the Newark Supergroup, are dominated by fluvial conglomerate and sandstone, lacustrine siltstone, mudstone, and abundant alluvial conglomerate and sandstone lithofacies. Deposition of these syn-rift sedimentary rocks was accommodated in a series of half grabens and subsidiary full grabens situated within the Permo-Carboniferous Appalachian orogen. The Mesozoic ENAM is commonly depicted as a magma-rich continental rift margin, with magmatism (Central Atlantic magmatic province [CAMP]) driving continental breakup. However, the southern portion of the ENAM shows evidence of magmatic breakup (e.g., seaward-dipping reflectors), and rifting and crustal thinning appeared to start ~30 m.y. prior to CAMP emplacement in the Jurassic. This study provides extensive new detrital zircon and apatite U-Pb provenance data to determine the provenance and reconstruct the paleodrainages of the Newark Basin during progressive rifting and magmatic breakup and the implications for the overall rift configuration and asymmetry during progressive rifting along the ENAM rift margin. Detailed new detrital zircon (N = 21; n = 3093) and apatite (N = 4; n = 559) U-Pb results from sandstone outcrop and core samples from the Newark Basin indicate a distinct provenance shift, with relatively older Carnian syn-rift strata predominately sourced from the hanging wall of the basin bounding fault in the east while relatively younger Norian strata were regionally sourced from both the hanging wall and footwall. The syn-rift strata at the Triassic-Jurassic boundary were sourced from the hanging wall before a transition to local footwall terranes. These results suggest two major provenance changes during progressive rifting—the first occurring during Carnian crustal necking and rift flank uplift as predicted by recent numerical models and the second occurring at the onset of the Jurassic due to regional and local thermal uplift during CAMP magmatism as seen along other magma-rich margins, such as the North Atlantic and the southern portion of the South Atlantic margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosphere
Geosphere 地学-地球科学综合
CiteScore
4.40
自引率
12.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.
期刊最新文献
U-Pb geochronology and petrography of Neoproterozoic to early Cambrian volcanic rocks in basement crustal terranes beneath the deep-water Gulf of Mexico Precursors to a continental-arc ignimbrite flare-up: Early central volcanoes of the San Juan Mountains, Colorado, USA Provenance shifts in bauxitic clay from Zibo, North China Craton, links tectonics and climate to environmental perturbation Reconciling complex stratigraphic frameworks reveals temporally and geographically variable depositional patterns of the Campanian Ignimbrite Neogene faulting, basin development, and relief generation in the southern Klamath Mountains (USA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1