{"title":"三叉戟:面向具有一致更新的分布式反应式SDN编程","authors":"K. Gao, Taishi Nojima, Haitao Yu, Y. Yang","doi":"10.1109/JSAC.2020.2999654","DOIUrl":null,"url":null,"abstract":"Software-Defined Networking (SDN) enables more dynamic and fine-grained network control. In particular, network operators can route traffic not only based on packet header fields, but also higher-level parameters such as user settings, traffic characteristics, and application-layer information extracted by virtualized network functions such as DPI, firewall and authentication servers. Integrating these higher-level parameters into an SDN programming framework brings substantial benefits but is still missing in the SDN community. In this paper, we articulate the challenges and then propose Trident, a novel unified SDN programming framework. Trident extends algorithmic SDN programming with a new abstraction called <italic>stream attribute</italic>, which integrates meta parameters into the match-action programming paradigm. Further, Trident adopts the idea of <italic>reactive value</italic> from function reactive programming, eliminating the complexity of manually handling dynamicity. To effectively and efficiently realize these novel ideas, Trident introduces <italic>reactive table</italic> as the basic processing unit and develops a domain-specific distributed update protocol to maintain consistency during updates. Evaluations show that Trident puts very little overhead on integrating existing network management tools and network functions, and can handle up to <inline-formula> <tex-math notation=\"LaTeX\">$O(10^{5})$ </tex-math></inline-formula> routing requests per second with <inline-formula> <tex-math notation=\"LaTeX\">$O(100)$ </tex-math></inline-formula> milliseconds latency.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1322-1334"},"PeriodicalIF":13.8000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2999654","citationCount":"1","resultStr":"{\"title\":\"Trident: Toward Distributed Reactive SDN Programming With Consistent Updates\",\"authors\":\"K. Gao, Taishi Nojima, Haitao Yu, Y. Yang\",\"doi\":\"10.1109/JSAC.2020.2999654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software-Defined Networking (SDN) enables more dynamic and fine-grained network control. In particular, network operators can route traffic not only based on packet header fields, but also higher-level parameters such as user settings, traffic characteristics, and application-layer information extracted by virtualized network functions such as DPI, firewall and authentication servers. Integrating these higher-level parameters into an SDN programming framework brings substantial benefits but is still missing in the SDN community. In this paper, we articulate the challenges and then propose Trident, a novel unified SDN programming framework. Trident extends algorithmic SDN programming with a new abstraction called <italic>stream attribute</italic>, which integrates meta parameters into the match-action programming paradigm. Further, Trident adopts the idea of <italic>reactive value</italic> from function reactive programming, eliminating the complexity of manually handling dynamicity. To effectively and efficiently realize these novel ideas, Trident introduces <italic>reactive table</italic> as the basic processing unit and develops a domain-specific distributed update protocol to maintain consistency during updates. Evaluations show that Trident puts very little overhead on integrating existing network management tools and network functions, and can handle up to <inline-formula> <tex-math notation=\\\"LaTeX\\\">$O(10^{5})$ </tex-math></inline-formula> routing requests per second with <inline-formula> <tex-math notation=\\\"LaTeX\\\">$O(100)$ </tex-math></inline-formula> milliseconds latency.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1322-1334\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2999654\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2999654\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2999654","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Trident: Toward Distributed Reactive SDN Programming With Consistent Updates
Software-Defined Networking (SDN) enables more dynamic and fine-grained network control. In particular, network operators can route traffic not only based on packet header fields, but also higher-level parameters such as user settings, traffic characteristics, and application-layer information extracted by virtualized network functions such as DPI, firewall and authentication servers. Integrating these higher-level parameters into an SDN programming framework brings substantial benefits but is still missing in the SDN community. In this paper, we articulate the challenges and then propose Trident, a novel unified SDN programming framework. Trident extends algorithmic SDN programming with a new abstraction called stream attribute, which integrates meta parameters into the match-action programming paradigm. Further, Trident adopts the idea of reactive value from function reactive programming, eliminating the complexity of manually handling dynamicity. To effectively and efficiently realize these novel ideas, Trident introduces reactive table as the basic processing unit and develops a domain-specific distributed update protocol to maintain consistency during updates. Evaluations show that Trident puts very little overhead on integrating existing network management tools and network functions, and can handle up to $O(10^{5})$ routing requests per second with $O(100)$ milliseconds latency.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.