{"title":"相干系统的有序系统签名及其动态版本","authors":"He Yi, N. Balakrishnan, Xiang Li","doi":"10.1017/jpr.2022.110","DOIUrl":null,"url":null,"abstract":"Abstract The notion of ordered system signature, originally defined for independent and identical coherent systems, is first extended to the case of independent and non-identical coherent systems, and then some key properties that help simplify its computation are established. Through its use, a dynamic ordered system signature is defined next, which facilitates a systematic study of dynamic properties of several coherent systems under a life test. The theoretical results established here are then illustrated through some specific examples. Finally, the usefulness in the evaluation of aging used systems of the concepts introduced is demonstrated.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"60 1","pages":"982 - 1002"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On ordered system signature and its dynamic version for coherent systems with applications\",\"authors\":\"He Yi, N. Balakrishnan, Xiang Li\",\"doi\":\"10.1017/jpr.2022.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The notion of ordered system signature, originally defined for independent and identical coherent systems, is first extended to the case of independent and non-identical coherent systems, and then some key properties that help simplify its computation are established. Through its use, a dynamic ordered system signature is defined next, which facilitates a systematic study of dynamic properties of several coherent systems under a life test. The theoretical results established here are then illustrated through some specific examples. Finally, the usefulness in the evaluation of aging used systems of the concepts introduced is demonstrated.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"60 1\",\"pages\":\"982 - 1002\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2022.110\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2022.110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On ordered system signature and its dynamic version for coherent systems with applications
Abstract The notion of ordered system signature, originally defined for independent and identical coherent systems, is first extended to the case of independent and non-identical coherent systems, and then some key properties that help simplify its computation are established. Through its use, a dynamic ordered system signature is defined next, which facilitates a systematic study of dynamic properties of several coherent systems under a life test. The theoretical results established here are then illustrated through some specific examples. Finally, the usefulness in the evaluation of aging used systems of the concepts introduced is demonstrated.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.