{"title":"AdS时空中宇宙弦和膜诱导的真空极化","authors":"W. Oliveira dos Santos, E. R. Bezerra de Mello","doi":"10.1140/epjc/s10052-023-11894-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate the vacuum polarization effects associated to a charged quantum massive scalar field on a <span>\\((D+1)\\)</span>-dimensional anti-de Sitter background induced by a magnetic-flux-carrying cosmic string in the braneworld model context. We consider the brane parallel to the anti-de Sitter boundary and the cosmic string orthogonal to them. Moreover, we assume that the field obeys the Robin boundary condition on the brane. Because the brane divides the space into two regions with different properties of the quantum vacuum, we calculate the vacuum expectation value (VEV) of the field squared and the energy–momentum tensor (EMT) in each region. To develop these analyses, we have constructed the positive frequency Wightman function for both regions. The latter is decomposed in a part associated with the anti-de Sitter bulk in the presence of a cosmic string only, and the other part induced by the brane. The vacuum polarization effects associated with the higher-dimensional anti-de Sitter bulk in the presence of cosmic string have been developed in the literature, and here we are mainly interested in the effects induced by the brane. We show that the VEVs of the field squared and the components of the EMT induced by the cosmic string are finite on the brane. Explicitly, we compare these observables with the corresponding ones induced by the brane only, and show that near the brane the contribution induced by the latter is larger than the one induced by the string; however, for points distant from the brane the situation is reversed. Moreover, some asymptotic expressions for the VEV of the field squared and EMT are provided for specific limiting cases of the physical parameters of the model. Also, an application of our results is given for a cosmic string in the <span>\\(Z_2\\)</span>-symmetric Randall–Sundrum braneworld model with a single brane.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11894-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Vacuum polarization induced by a cosmic string and a brane in AdS spacetime\",\"authors\":\"W. Oliveira dos Santos, E. R. Bezerra de Mello\",\"doi\":\"10.1140/epjc/s10052-023-11894-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we investigate the vacuum polarization effects associated to a charged quantum massive scalar field on a <span>\\\\((D+1)\\\\)</span>-dimensional anti-de Sitter background induced by a magnetic-flux-carrying cosmic string in the braneworld model context. We consider the brane parallel to the anti-de Sitter boundary and the cosmic string orthogonal to them. Moreover, we assume that the field obeys the Robin boundary condition on the brane. Because the brane divides the space into two regions with different properties of the quantum vacuum, we calculate the vacuum expectation value (VEV) of the field squared and the energy–momentum tensor (EMT) in each region. To develop these analyses, we have constructed the positive frequency Wightman function for both regions. The latter is decomposed in a part associated with the anti-de Sitter bulk in the presence of a cosmic string only, and the other part induced by the brane. The vacuum polarization effects associated with the higher-dimensional anti-de Sitter bulk in the presence of cosmic string have been developed in the literature, and here we are mainly interested in the effects induced by the brane. We show that the VEVs of the field squared and the components of the EMT induced by the cosmic string are finite on the brane. Explicitly, we compare these observables with the corresponding ones induced by the brane only, and show that near the brane the contribution induced by the latter is larger than the one induced by the string; however, for points distant from the brane the situation is reversed. Moreover, some asymptotic expressions for the VEV of the field squared and EMT are provided for specific limiting cases of the physical parameters of the model. Also, an application of our results is given for a cosmic string in the <span>\\\\(Z_2\\\\)</span>-symmetric Randall–Sundrum braneworld model with a single brane.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"83 8\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11894-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-023-11894-0\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11894-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Vacuum polarization induced by a cosmic string and a brane in AdS spacetime
In this paper we investigate the vacuum polarization effects associated to a charged quantum massive scalar field on a \((D+1)\)-dimensional anti-de Sitter background induced by a magnetic-flux-carrying cosmic string in the braneworld model context. We consider the brane parallel to the anti-de Sitter boundary and the cosmic string orthogonal to them. Moreover, we assume that the field obeys the Robin boundary condition on the brane. Because the brane divides the space into two regions with different properties of the quantum vacuum, we calculate the vacuum expectation value (VEV) of the field squared and the energy–momentum tensor (EMT) in each region. To develop these analyses, we have constructed the positive frequency Wightman function for both regions. The latter is decomposed in a part associated with the anti-de Sitter bulk in the presence of a cosmic string only, and the other part induced by the brane. The vacuum polarization effects associated with the higher-dimensional anti-de Sitter bulk in the presence of cosmic string have been developed in the literature, and here we are mainly interested in the effects induced by the brane. We show that the VEVs of the field squared and the components of the EMT induced by the cosmic string are finite on the brane. Explicitly, we compare these observables with the corresponding ones induced by the brane only, and show that near the brane the contribution induced by the latter is larger than the one induced by the string; however, for points distant from the brane the situation is reversed. Moreover, some asymptotic expressions for the VEV of the field squared and EMT are provided for specific limiting cases of the physical parameters of the model. Also, an application of our results is given for a cosmic string in the \(Z_2\)-symmetric Randall–Sundrum braneworld model with a single brane.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.