Fangfang Wang, Yan-Rong Zhang, Yang Su, Di Zhang, N. Xia, Yangyang Sun, Yu Liu
{"title":"原子转移自由基聚合法制备碱-木质素接枝聚丙烯酰胺的表征","authors":"Fangfang Wang, Yan-Rong Zhang, Yang Su, Di Zhang, N. Xia, Yangyang Sun, Yu Liu","doi":"10.1080/02773813.2021.2015388","DOIUrl":null,"url":null,"abstract":"Abstract The preparation of value-added, chemically modified lignin-based copolymers for the use of technical lignin is crucial for green and sustainable development. Herein, we synthesized alkali-lignin-grafted polyacrylamide by atom transfer radical polymerization (ATRP). As alkali lignin (AL) has the highest total hydroxyl group content, it was modified with 2-bromoisobutyryl bromide to synthesize a lignin macroinitiator (lignin-Br) at different ratios of [OH group in AL]:[TEA]:[BiBB] = 1:1:1, 1:1.5:1.5, and 1:2:2. Acrylamide was grafted from lignin-Br with the most Br-initiating sites via ATRP. The ratios of monomer to lignin-Br used were 50:1, 100:1, and 200:1, and the synthesized copolymers (L-g-PAM) were denoted as L-g-PAM50, L-g-PAM100, and L-g-PAM200, respectively. These copolymers were characterized by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR) spectroscopies. The FT-IR and 1H NMR results indicated that polyacrylamide was introduced into the lignin backbone of all L-g-PAM copolymers. Gel permeation chromatography of L-g-PAM showed that the M w of L-g-PAM200 was the highest at 427,383 g/mol. Photographs and scanning electron microscopy images of L-g-PAM showed that L-g-PAM appeared as a soft sponge and contained interwoven fibers. The maximum degradation temperature (T max) of L-g-PAM increased with increasing monomer-to-lignin-Br ratio. Moreover, the glass transition temperature (T g) of L-g-PAM was higher than that of AL. The alkali-lignin-grafted polyacrylamide, synthesized by ATRP, in our study has a narrow molecular weight distribution, and its soft sponge properties make it a hydrogel or another surfactant.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"42 1","pages":"58 - 68"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of alkali-lignin-grafted polyacrylamide synthesized by atom transfer radical polymerization\",\"authors\":\"Fangfang Wang, Yan-Rong Zhang, Yang Su, Di Zhang, N. Xia, Yangyang Sun, Yu Liu\",\"doi\":\"10.1080/02773813.2021.2015388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The preparation of value-added, chemically modified lignin-based copolymers for the use of technical lignin is crucial for green and sustainable development. Herein, we synthesized alkali-lignin-grafted polyacrylamide by atom transfer radical polymerization (ATRP). As alkali lignin (AL) has the highest total hydroxyl group content, it was modified with 2-bromoisobutyryl bromide to synthesize a lignin macroinitiator (lignin-Br) at different ratios of [OH group in AL]:[TEA]:[BiBB] = 1:1:1, 1:1.5:1.5, and 1:2:2. Acrylamide was grafted from lignin-Br with the most Br-initiating sites via ATRP. The ratios of monomer to lignin-Br used were 50:1, 100:1, and 200:1, and the synthesized copolymers (L-g-PAM) were denoted as L-g-PAM50, L-g-PAM100, and L-g-PAM200, respectively. These copolymers were characterized by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR) spectroscopies. The FT-IR and 1H NMR results indicated that polyacrylamide was introduced into the lignin backbone of all L-g-PAM copolymers. Gel permeation chromatography of L-g-PAM showed that the M w of L-g-PAM200 was the highest at 427,383 g/mol. Photographs and scanning electron microscopy images of L-g-PAM showed that L-g-PAM appeared as a soft sponge and contained interwoven fibers. The maximum degradation temperature (T max) of L-g-PAM increased with increasing monomer-to-lignin-Br ratio. Moreover, the glass transition temperature (T g) of L-g-PAM was higher than that of AL. The alkali-lignin-grafted polyacrylamide, synthesized by ATRP, in our study has a narrow molecular weight distribution, and its soft sponge properties make it a hydrogel or another surfactant.\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"42 1\",\"pages\":\"58 - 68\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2021.2015388\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2021.2015388","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Characterization of alkali-lignin-grafted polyacrylamide synthesized by atom transfer radical polymerization
Abstract The preparation of value-added, chemically modified lignin-based copolymers for the use of technical lignin is crucial for green and sustainable development. Herein, we synthesized alkali-lignin-grafted polyacrylamide by atom transfer radical polymerization (ATRP). As alkali lignin (AL) has the highest total hydroxyl group content, it was modified with 2-bromoisobutyryl bromide to synthesize a lignin macroinitiator (lignin-Br) at different ratios of [OH group in AL]:[TEA]:[BiBB] = 1:1:1, 1:1.5:1.5, and 1:2:2. Acrylamide was grafted from lignin-Br with the most Br-initiating sites via ATRP. The ratios of monomer to lignin-Br used were 50:1, 100:1, and 200:1, and the synthesized copolymers (L-g-PAM) were denoted as L-g-PAM50, L-g-PAM100, and L-g-PAM200, respectively. These copolymers were characterized by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR) spectroscopies. The FT-IR and 1H NMR results indicated that polyacrylamide was introduced into the lignin backbone of all L-g-PAM copolymers. Gel permeation chromatography of L-g-PAM showed that the M w of L-g-PAM200 was the highest at 427,383 g/mol. Photographs and scanning electron microscopy images of L-g-PAM showed that L-g-PAM appeared as a soft sponge and contained interwoven fibers. The maximum degradation temperature (T max) of L-g-PAM increased with increasing monomer-to-lignin-Br ratio. Moreover, the glass transition temperature (T g) of L-g-PAM was higher than that of AL. The alkali-lignin-grafted polyacrylamide, synthesized by ATRP, in our study has a narrow molecular weight distribution, and its soft sponge properties make it a hydrogel or another surfactant.
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.