对流解析WRF模型模拟中的海洋风事件特征

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Weather and Forecasting Pub Date : 2023-05-18 DOI:10.1175/waf-d-22-0020.1
Kelsey B. Thompson, J. Mecikalski, M. Bateman
{"title":"对流解析WRF模型模拟中的海洋风事件特征","authors":"Kelsey B. Thompson, J. Mecikalski, M. Bateman","doi":"10.1175/waf-d-22-0020.1","DOIUrl":null,"url":null,"abstract":"\nAnalyses of cloud top temperature and lightning characteristics of 48 Weather Research and Forecasting (WRF) model simulated ocean-based wind events, with 1 min temporal and 0.5 km horizontal resolution, revealed signatures similar to the corresponding 13 observed events detected by buoys and Coastal-Marine Automated Network (C-MAN) stations as shown in prior research on ocean-based wind events by the first author. These events occurred in the eastern Gulf of Mexico and in the Atlantic Ocean from Florida northward through South Carolina. The coldest WRF cloud top temperature (WCTT) and peak WRF-estimated lightning flash rate values of the model simulated events, where each event was required to have a negative vertical velocity of at least 10 m s-1 in the lowest 2 km associated with a convective storm, occurred at an average of 4.2 and 1.1 min prior to the events, respectively. With 36 of the events, the peak estimated flash rate occurred within 5 min of the coldest WCTT. Cloud depth typically increased as the WCTT decreased, and the maximum depth occurred at an average of 2.9 min prior to the events. Thermal cooling and precipitation loading provided negative buoyancy needed to help drive the wind events. Environmental characteristics of the model simulated ocean-based wind events also resembled those associated with land-based wet downbursts, including moist air near the surface, lapse rates near moist adiabatic, and low cloud bases.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signatures of Oceanic Wind Events in Convection Resolving WRF Model Simulations\",\"authors\":\"Kelsey B. Thompson, J. Mecikalski, M. Bateman\",\"doi\":\"10.1175/waf-d-22-0020.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nAnalyses of cloud top temperature and lightning characteristics of 48 Weather Research and Forecasting (WRF) model simulated ocean-based wind events, with 1 min temporal and 0.5 km horizontal resolution, revealed signatures similar to the corresponding 13 observed events detected by buoys and Coastal-Marine Automated Network (C-MAN) stations as shown in prior research on ocean-based wind events by the first author. These events occurred in the eastern Gulf of Mexico and in the Atlantic Ocean from Florida northward through South Carolina. The coldest WRF cloud top temperature (WCTT) and peak WRF-estimated lightning flash rate values of the model simulated events, where each event was required to have a negative vertical velocity of at least 10 m s-1 in the lowest 2 km associated with a convective storm, occurred at an average of 4.2 and 1.1 min prior to the events, respectively. With 36 of the events, the peak estimated flash rate occurred within 5 min of the coldest WCTT. Cloud depth typically increased as the WCTT decreased, and the maximum depth occurred at an average of 2.9 min prior to the events. Thermal cooling and precipitation loading provided negative buoyancy needed to help drive the wind events. Environmental characteristics of the model simulated ocean-based wind events also resembled those associated with land-based wet downbursts, including moist air near the surface, lapse rates near moist adiabatic, and low cloud bases.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-22-0020.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-22-0020.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对天气研究与预报(WRF)模式模拟的48个1分钟时间和0.5 km水平分辨率的海洋风事件的云顶温度和闪电特征进行分析,揭示了与浮标和海岸-海洋自动网络(C-MAN)站探测到的相应13个观测事件相似的特征,这与第一作者先前对海洋风事件的研究结果相似。这些事件发生在墨西哥湾东部和从佛罗里达州向北到南卡罗来纳州的大西洋。模式模拟事件的最冷WRF云顶温度(WCTT)和WRF估计的闪电闪速峰值值(每个事件要求在与对流风暴相关的最低2 km处具有至少10 m s-1的负垂直速度)平均分别在事件发生前4.2和1.1 min出现。在其中36个事件中,估计闪速峰值发生在最冷WCTT的5分钟内。云深随WCTT减小而增大,最大云深平均出现在事件发生前2.9 min。热冷却和降水负荷提供了帮助驱动风事件所需的负浮力。该模式模拟的海洋风事件的环境特征也类似于与陆基湿降暴相关的环境特征,包括地表附近的潮湿空气、潮湿绝热附近的递减率和低云基底。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signatures of Oceanic Wind Events in Convection Resolving WRF Model Simulations
Analyses of cloud top temperature and lightning characteristics of 48 Weather Research and Forecasting (WRF) model simulated ocean-based wind events, with 1 min temporal and 0.5 km horizontal resolution, revealed signatures similar to the corresponding 13 observed events detected by buoys and Coastal-Marine Automated Network (C-MAN) stations as shown in prior research on ocean-based wind events by the first author. These events occurred in the eastern Gulf of Mexico and in the Atlantic Ocean from Florida northward through South Carolina. The coldest WRF cloud top temperature (WCTT) and peak WRF-estimated lightning flash rate values of the model simulated events, where each event was required to have a negative vertical velocity of at least 10 m s-1 in the lowest 2 km associated with a convective storm, occurred at an average of 4.2 and 1.1 min prior to the events, respectively. With 36 of the events, the peak estimated flash rate occurred within 5 min of the coldest WCTT. Cloud depth typically increased as the WCTT decreased, and the maximum depth occurred at an average of 2.9 min prior to the events. Thermal cooling and precipitation loading provided negative buoyancy needed to help drive the wind events. Environmental characteristics of the model simulated ocean-based wind events also resembled those associated with land-based wet downbursts, including moist air near the surface, lapse rates near moist adiabatic, and low cloud bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weather and Forecasting
Weather and Forecasting 地学-气象与大气科学
CiteScore
5.20
自引率
17.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.
期刊最新文献
The Impact of Analysis Correction-based Additive Inflation on subseasonal tropical prediction in the Navy Earth System Prediction Capability Comparison of Clustering Approaches in a Multi-Model Ensemble for U.S. East Coast Cold Season Extratropical Cyclones Collaborative Exploration of Storm-Scale Probabilistic Guidance for NWS Forecast Operations Verification of the Global Forecast System, North American Mesoscale Forecast System, and High-Resolution Rapid Refresh Model Near-Surface Forecasts by use of the New York State Mesonet The influence of time varying sea-ice concentration on Antarctic and Southern Ocean numerical weather prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1