具有高维协变量的完全随机实验中平均治疗效果的自举推理

Hanzhong Liu
{"title":"具有高维协变量的完全随机实验中平均治疗效果的自举推理","authors":"Hanzhong Liu","doi":"10.1080/24709360.2021.1898269","DOIUrl":null,"url":null,"abstract":"Investigators often use regression adjustment methods to analyze the results of randomized experiments when baseline covariates are available. Their aim is to improve the estimation efficiency of treatment effects by adjusting for imbalance of covariates. Under mild conditions, the regression-adjusted average treatment effect estimator is asymptotically normal with asymptotic variance no greater than that of the unadjusted estimator. The asymptotic variance can be estimated conservatively based on residual sum of squares. This article studies alternative inference methods based on the bootstrap and investigates their asymptotic properties under the Neyman–Rubin causal model and randomization-based inference framework. We show that the weighted, residual and paired bootstrap methods provide asymptotically conservative variance estimators that perform at least as good as the estimator based on residual sum of squares. We further provide counterexamples, where the original estimator is asymptotically normal, but the bootstrap counterpart is inconsistent for estimating its limiting distribution. Simulation studies indicate that the paired bootstrap method is preferable, in terms of preserving type I errors, for a small sample size. Finally, our methods analyze HER2+ breast cancer data from the NeOAdjuvant Herceptin trial to examine the effectiveness of trastuzumab in combination with neoadjuvant chemotherapy.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"6 1","pages":"203 - 220"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2021.1898269","citationCount":"0","resultStr":"{\"title\":\"Bootstrapping inference of average treatment effect in completely randomized experiments with high-dimensional covariates\",\"authors\":\"Hanzhong Liu\",\"doi\":\"10.1080/24709360.2021.1898269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigators often use regression adjustment methods to analyze the results of randomized experiments when baseline covariates are available. Their aim is to improve the estimation efficiency of treatment effects by adjusting for imbalance of covariates. Under mild conditions, the regression-adjusted average treatment effect estimator is asymptotically normal with asymptotic variance no greater than that of the unadjusted estimator. The asymptotic variance can be estimated conservatively based on residual sum of squares. This article studies alternative inference methods based on the bootstrap and investigates their asymptotic properties under the Neyman–Rubin causal model and randomization-based inference framework. We show that the weighted, residual and paired bootstrap methods provide asymptotically conservative variance estimators that perform at least as good as the estimator based on residual sum of squares. We further provide counterexamples, where the original estimator is asymptotically normal, but the bootstrap counterpart is inconsistent for estimating its limiting distribution. Simulation studies indicate that the paired bootstrap method is preferable, in terms of preserving type I errors, for a small sample size. Finally, our methods analyze HER2+ breast cancer data from the NeOAdjuvant Herceptin trial to examine the effectiveness of trastuzumab in combination with neoadjuvant chemotherapy.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"6 1\",\"pages\":\"203 - 220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2021.1898269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2021.1898269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2021.1898269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

当基线协变量可用时,研究人员经常使用回归调整方法来分析随机实验的结果。他们的目的是通过调整协变量的不平衡来提高治疗效果的估计效率。在温和条件下,回归调整平均治疗效果估计量是渐近正态的,渐近方差不大于未调整估计量的渐近方差。渐近方差可以根据残差平方和保守估计。本文研究了基于bootstrap的替代推理方法,并在Neyman-Rubin因果模型和基于随机化的推理框架下研究了它们的渐近性质。我们证明了加权、残差和配对自举方法提供了渐近保守的方差估计量,其性能至少与基于残差平方和的估计量一样好。我们进一步提供了反例,其中原始估计器是渐近正态的,但bootstrap对应物在估计其极限分布时是不一致的。仿真研究表明,对于小样本量,在保留I型误差方面,配对自举方法是优选的。最后,我们的方法分析了NeOAdjuvant Herceptin试验的HER2+乳腺癌症数据,以检查曲妥珠单抗联合新辅助化疗的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bootstrapping inference of average treatment effect in completely randomized experiments with high-dimensional covariates
Investigators often use regression adjustment methods to analyze the results of randomized experiments when baseline covariates are available. Their aim is to improve the estimation efficiency of treatment effects by adjusting for imbalance of covariates. Under mild conditions, the regression-adjusted average treatment effect estimator is asymptotically normal with asymptotic variance no greater than that of the unadjusted estimator. The asymptotic variance can be estimated conservatively based on residual sum of squares. This article studies alternative inference methods based on the bootstrap and investigates their asymptotic properties under the Neyman–Rubin causal model and randomization-based inference framework. We show that the weighted, residual and paired bootstrap methods provide asymptotically conservative variance estimators that perform at least as good as the estimator based on residual sum of squares. We further provide counterexamples, where the original estimator is asymptotically normal, but the bootstrap counterpart is inconsistent for estimating its limiting distribution. Simulation studies indicate that the paired bootstrap method is preferable, in terms of preserving type I errors, for a small sample size. Finally, our methods analyze HER2+ breast cancer data from the NeOAdjuvant Herceptin trial to examine the effectiveness of trastuzumab in combination with neoadjuvant chemotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1