C. Anjali, Julia Punitha Malar Dhas, J. Amar Pratap Singh
{"title":"自动化程序和软件缺陷的根本原因分析使用机器学习技术","authors":"C. Anjali, Julia Punitha Malar Dhas, J. Amar Pratap Singh","doi":"10.1080/00051144.2023.2225344","DOIUrl":null,"url":null,"abstract":"For the automated root cause analysis (ARCA) method and simplified RCA technique, their empirical assessment is presented in this study. A focus group meeting is a foundation for the target problem identification in the ARCA technique. This is compared to earlier RCA methodologies which rely on problem sampling for target problem discovery and high beginning costs. In this research, we suggest a naïve Bayes based machine learning method for identifying the underlying causes of newly reported software issues, which will facilitate a quicker and more effective resolution of software bugs. The ARCA technique produced a large number of high-quality corrective actions while requiring a reasonable amount of effort. The strategy is an effective way to find new opportunities for process improvement and produce fresh process improvement ideas in contrast to the organization’s corporate practices. In addition it is simple to utilize. Ultimately, we compared the methodology with other machine learning classifiers including support vector machine and decision tree.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated program and software defect root cause analysis using machine learning techniques\",\"authors\":\"C. Anjali, Julia Punitha Malar Dhas, J. Amar Pratap Singh\",\"doi\":\"10.1080/00051144.2023.2225344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the automated root cause analysis (ARCA) method and simplified RCA technique, their empirical assessment is presented in this study. A focus group meeting is a foundation for the target problem identification in the ARCA technique. This is compared to earlier RCA methodologies which rely on problem sampling for target problem discovery and high beginning costs. In this research, we suggest a naïve Bayes based machine learning method for identifying the underlying causes of newly reported software issues, which will facilitate a quicker and more effective resolution of software bugs. The ARCA technique produced a large number of high-quality corrective actions while requiring a reasonable amount of effort. The strategy is an effective way to find new opportunities for process improvement and produce fresh process improvement ideas in contrast to the organization’s corporate practices. In addition it is simple to utilize. Ultimately, we compared the methodology with other machine learning classifiers including support vector machine and decision tree.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2225344\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2225344","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Automated program and software defect root cause analysis using machine learning techniques
For the automated root cause analysis (ARCA) method and simplified RCA technique, their empirical assessment is presented in this study. A focus group meeting is a foundation for the target problem identification in the ARCA technique. This is compared to earlier RCA methodologies which rely on problem sampling for target problem discovery and high beginning costs. In this research, we suggest a naïve Bayes based machine learning method for identifying the underlying causes of newly reported software issues, which will facilitate a quicker and more effective resolution of software bugs. The ARCA technique produced a large number of high-quality corrective actions while requiring a reasonable amount of effort. The strategy is an effective way to find new opportunities for process improvement and produce fresh process improvement ideas in contrast to the organization’s corporate practices. In addition it is simple to utilize. Ultimately, we compared the methodology with other machine learning classifiers including support vector machine and decision tree.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.