Huifeng Chen , Mingbo Sun , Dapeng Xiong , Yixin Yang , Taiyu Wang , Hongbo Wang
{"title":"复杂截面管道中超声速流动的大涡模拟","authors":"Huifeng Chen , Mingbo Sun , Dapeng Xiong , Yixin Yang , Taiyu Wang , Hongbo Wang","doi":"10.1016/j.taml.2023.100469","DOIUrl":null,"url":null,"abstract":"<div><p>Large Eddy Simulation (LES) has been employed for the investigation of supersonic flow characteristics in five ducts with varying cross-sectional geometries. The numerical results reveal that flow channel configurations exert a considerable influence on the mainstream flow and the near-wall flow behavior. In contrast to straight ducts, square-to-circular and rectangular-to-circular ducts exhibit thicker boundary layers and a greater presence of vortex structures. Given the same inlet area, rectangular-to-circular ducts lead to higher flow drag force and total pressure loss than square-to-circular ducts. Characterized by the substantial flow separation and shock waves, the “S-shaped duct shows significant vertically-asymmetric characteristics.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large eddy simulation of supersonic flow in ducts with complex cross-sections\",\"authors\":\"Huifeng Chen , Mingbo Sun , Dapeng Xiong , Yixin Yang , Taiyu Wang , Hongbo Wang\",\"doi\":\"10.1016/j.taml.2023.100469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large Eddy Simulation (LES) has been employed for the investigation of supersonic flow characteristics in five ducts with varying cross-sectional geometries. The numerical results reveal that flow channel configurations exert a considerable influence on the mainstream flow and the near-wall flow behavior. In contrast to straight ducts, square-to-circular and rectangular-to-circular ducts exhibit thicker boundary layers and a greater presence of vortex structures. Given the same inlet area, rectangular-to-circular ducts lead to higher flow drag force and total pressure loss than square-to-circular ducts. Characterized by the substantial flow separation and shock waves, the “S-shaped duct shows significant vertically-asymmetric characteristics.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000405\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000405","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Large eddy simulation of supersonic flow in ducts with complex cross-sections
Large Eddy Simulation (LES) has been employed for the investigation of supersonic flow characteristics in five ducts with varying cross-sectional geometries. The numerical results reveal that flow channel configurations exert a considerable influence on the mainstream flow and the near-wall flow behavior. In contrast to straight ducts, square-to-circular and rectangular-to-circular ducts exhibit thicker boundary layers and a greater presence of vortex structures. Given the same inlet area, rectangular-to-circular ducts lead to higher flow drag force and total pressure loss than square-to-circular ducts. Characterized by the substantial flow separation and shock waves, the “S-shaped duct shows significant vertically-asymmetric characteristics.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).