{"title":"具有连续阈值捕捞政策的渔业模型的动力学及其对保护和管理的影响","authors":"Joydeb Bhattacharyya, Anal Chatterjee","doi":"10.1142/s0218339022500334","DOIUrl":null,"url":null,"abstract":"There is a global decline in marine fish abundance due to unsustainable harvesting. An effective harvesting policy can protect the overfished population from possible extinction. In this study, we used a mathematical model characterized by density-dependent refuge protection for herbivorous fish, exhibiting an anti-predator response in presence of a generalist invasive fish. The anti-predator behavior entails predator density-dependent reduced fecundity of the herbivorous fish. The model assumes a continuous threshold harvesting policy (CTHP) for the herbivorous fish and uses the catch-per-unit-effort (CPUE) hypothesis for harvesting the invasive fish. The CTHP allows harvesting of the herbivorous fish only when the density of the herbivorous fish exceeds a specified threshold value, thus ensuring the long-term sustainability of the herbivorous fish stock. The existence and stability of steady-state solutions and the bifurcations of the model are investigated. Our study reveals that the level of apprehension of the herbivorous fish and fishing efforts will play a significant role in the stability of the system. We examine the existence of the bionomic equilibrium and then study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle. We discuss different subsidies and tax policies for the effective management of a sustainable fishery. We use numerical simulations to compare the revenues corresponding to the harvest policies based on maximum sustainable yield (MSY), maximum economic yield (MEY), and optimal sustainable yield (OSY) for inferring an ecologically sustainable and economically viable harvesting policy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DYNAMICS OF A FISHERY MODEL WITH CONTINUOUS THRESHOLD HARVESTING POLICY AND ITS LEVERAGE FOR CONSERVATION AND MANAGEMENT\",\"authors\":\"Joydeb Bhattacharyya, Anal Chatterjee\",\"doi\":\"10.1142/s0218339022500334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a global decline in marine fish abundance due to unsustainable harvesting. An effective harvesting policy can protect the overfished population from possible extinction. In this study, we used a mathematical model characterized by density-dependent refuge protection for herbivorous fish, exhibiting an anti-predator response in presence of a generalist invasive fish. The anti-predator behavior entails predator density-dependent reduced fecundity of the herbivorous fish. The model assumes a continuous threshold harvesting policy (CTHP) for the herbivorous fish and uses the catch-per-unit-effort (CPUE) hypothesis for harvesting the invasive fish. The CTHP allows harvesting of the herbivorous fish only when the density of the herbivorous fish exceeds a specified threshold value, thus ensuring the long-term sustainability of the herbivorous fish stock. The existence and stability of steady-state solutions and the bifurcations of the model are investigated. Our study reveals that the level of apprehension of the herbivorous fish and fishing efforts will play a significant role in the stability of the system. We examine the existence of the bionomic equilibrium and then study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle. We discuss different subsidies and tax policies for the effective management of a sustainable fishery. We use numerical simulations to compare the revenues corresponding to the harvest policies based on maximum sustainable yield (MSY), maximum economic yield (MEY), and optimal sustainable yield (OSY) for inferring an ecologically sustainable and economically viable harvesting policy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339022500334\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339022500334","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
DYNAMICS OF A FISHERY MODEL WITH CONTINUOUS THRESHOLD HARVESTING POLICY AND ITS LEVERAGE FOR CONSERVATION AND MANAGEMENT
There is a global decline in marine fish abundance due to unsustainable harvesting. An effective harvesting policy can protect the overfished population from possible extinction. In this study, we used a mathematical model characterized by density-dependent refuge protection for herbivorous fish, exhibiting an anti-predator response in presence of a generalist invasive fish. The anti-predator behavior entails predator density-dependent reduced fecundity of the herbivorous fish. The model assumes a continuous threshold harvesting policy (CTHP) for the herbivorous fish and uses the catch-per-unit-effort (CPUE) hypothesis for harvesting the invasive fish. The CTHP allows harvesting of the herbivorous fish only when the density of the herbivorous fish exceeds a specified threshold value, thus ensuring the long-term sustainability of the herbivorous fish stock. The existence and stability of steady-state solutions and the bifurcations of the model are investigated. Our study reveals that the level of apprehension of the herbivorous fish and fishing efforts will play a significant role in the stability of the system. We examine the existence of the bionomic equilibrium and then study the dynamic optimization of the harvesting policy by employing Pontryagin’s maximum principle. We discuss different subsidies and tax policies for the effective management of a sustainable fishery. We use numerical simulations to compare the revenues corresponding to the harvest policies based on maximum sustainable yield (MSY), maximum economic yield (MEY), and optimal sustainable yield (OSY) for inferring an ecologically sustainable and economically viable harvesting policy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.