振动风机叶片气动特性的频域实验与数值研究

Q4 Chemical Engineering Applied and Computational Mechanics Pub Date : 2021-06-04 DOI:10.22055/JACM.2021.37406.3011
S. W. Naung, Mahdi Toosi, M. Rahmati
{"title":"振动风机叶片气动特性的频域实验与数值研究","authors":"S. W. Naung, Mahdi Toosi, M. Rahmati","doi":"10.22055/JACM.2021.37406.3011","DOIUrl":null,"url":null,"abstract":"A highly efficient nonlinear frequency-domain solution method is proposed and employed to investigate the aerodynamic and aeromechanical performances of an oscillating wind turbine blade aerofoil in this study. Extensive validations of a frequencydomain method against an experiment as well as a typical time-domain solution method are provided in this paper. An experiment is also designed and conducted to measure pressure distributions over an aerofoil as well as to validate the numerical model. Unsteady pressure distributions and aeroelasticity parameters of the oscillating NACA0012 aerofoil are computed at various angles of attack and Reynolds numbers. Results indicate that the difference of unsteady pressure distributions between the two surfaces of the aerofoil becomes larger as the angle of attack is increased, whereas the flow separation on the suction surface is reduced by raising the Reynolds number. The turbulent flow develops in the downstream region due to the laminar vortex shedding at lower Reynolds numbers. It is also revealed that the Reynolds number has an impact on the aeroelasticity, and the aerodynamic damping value is larger at higher Reynolds numbers. The comparison between the frequency-domain method and the time-domain method shows that the frequency-domain method is not only accurate but also computationally very efficient as the computation time is reduced by 90%.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Experimental and Numerical Study on the Aerodynamic Performance of Vibrating Wind Turbine Blade with Frequency-Domain Method\",\"authors\":\"S. W. Naung, Mahdi Toosi, M. Rahmati\",\"doi\":\"10.22055/JACM.2021.37406.3011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly efficient nonlinear frequency-domain solution method is proposed and employed to investigate the aerodynamic and aeromechanical performances of an oscillating wind turbine blade aerofoil in this study. Extensive validations of a frequencydomain method against an experiment as well as a typical time-domain solution method are provided in this paper. An experiment is also designed and conducted to measure pressure distributions over an aerofoil as well as to validate the numerical model. Unsteady pressure distributions and aeroelasticity parameters of the oscillating NACA0012 aerofoil are computed at various angles of attack and Reynolds numbers. Results indicate that the difference of unsteady pressure distributions between the two surfaces of the aerofoil becomes larger as the angle of attack is increased, whereas the flow separation on the suction surface is reduced by raising the Reynolds number. The turbulent flow develops in the downstream region due to the laminar vortex shedding at lower Reynolds numbers. It is also revealed that the Reynolds number has an impact on the aeroelasticity, and the aerodynamic damping value is larger at higher Reynolds numbers. The comparison between the frequency-domain method and the time-domain method shows that the frequency-domain method is not only accurate but also computationally very efficient as the computation time is reduced by 90%.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22055/JACM.2021.37406.3011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.37406.3011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种高效的非线性频域求解方法,并将其用于研究振荡风机叶片翼型的气动和气动力学性能。本文对频域方法和典型的时域求解方法进行了实验验证。还设计并进行了一个实验来测量机翼上的压力分布,并验证了数值模型。计算了NACA0012机翼在不同攻角和雷诺数下的非定常压力分布和气动弹性参数。结果表明,随着攻角的增大,机翼两个表面之间的非定常压力分布差异变大,而雷诺数的增加则减小了吸力面上的流分离。在较低的雷诺数下,由于层流旋涡脱落,湍流在下游区域发展。研究还表明,雷诺数对气动弹性有影响,雷诺数越大,气动阻尼值越大。频域方法与时域方法的比较表明,频域方法不仅准确,而且计算效率很高,计算时间减少了90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Experimental and Numerical Study on the Aerodynamic Performance of Vibrating Wind Turbine Blade with Frequency-Domain Method
A highly efficient nonlinear frequency-domain solution method is proposed and employed to investigate the aerodynamic and aeromechanical performances of an oscillating wind turbine blade aerofoil in this study. Extensive validations of a frequencydomain method against an experiment as well as a typical time-domain solution method are provided in this paper. An experiment is also designed and conducted to measure pressure distributions over an aerofoil as well as to validate the numerical model. Unsteady pressure distributions and aeroelasticity parameters of the oscillating NACA0012 aerofoil are computed at various angles of attack and Reynolds numbers. Results indicate that the difference of unsteady pressure distributions between the two surfaces of the aerofoil becomes larger as the angle of attack is increased, whereas the flow separation on the suction surface is reduced by raising the Reynolds number. The turbulent flow develops in the downstream region due to the laminar vortex shedding at lower Reynolds numbers. It is also revealed that the Reynolds number has an impact on the aeroelasticity, and the aerodynamic damping value is larger at higher Reynolds numbers. The comparison between the frequency-domain method and the time-domain method shows that the frequency-domain method is not only accurate but also computationally very efficient as the computation time is reduced by 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
期刊最新文献
Compressor cascade correlations modelling at design points using artificial neural networks Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability Numerical simulations of aeroelastic instabilities in a turbine-blade cascade by a modified Van der Pol model at running excitation Higher order computational model considering the effects of transverse normal strain and 2-parameter elastic foundation for the bending of laminated panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1