第谷·布拉赫的《土星轨道元素计算》及其土星行星模型的技术方面

IF 0.7 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Archive for History of Exact Sciences Pub Date : 2020-08-04 DOI:10.1007/s00407-020-00253-0
Christián C. Carman
{"title":"第谷·布拉赫的《土星轨道元素计算》及其土星行星模型的技术方面","authors":"Christián C. Carman","doi":"10.1007/s00407-020-00253-0","DOIUrl":null,"url":null,"abstract":"<div><p>Tycho Brahe was not just an observer; he was a skilled theoretical astronomer, as his lunar and solar models show. Still, even if he is recognized for proposing the Geoheliocentric system, little do we know of the technical details of his planetary models, probably because he died before publishing the last two volumes of his <i>Astronomiae Instaurandae Progymnasmata</i>, which he planned to devote to the planets. As it happens, however, there are some extant drafts of his calculations in Dreyer’s edition of Tycho’s <i>Opera Omnia</i> under the name <i>Calculi ad Corrigenda Elementa orbitae Saturni</i>, which, to the best of my knowledge, have not yet been analyzed before. In these manuscripts, Tycho starts with calculations based on the Prutenic Tables and makes a series of adjustments to the mean longitude, the longitude of the apogee, and the eccentricity to fit a series of observations of oppositions. In doing that, Tycho (1) describes and applies a new method for obtaining accurate values for the parameters of the superior planets, he (2) develops a divided eccentricity (not bisected) model of Saturn, similar to the one we know Longomontanus and Kepler applied to Mars, and finally (3) he realizes that the true position of the Sun somehow affects the motion of Saturn around the zodiac and develops a method to correct the position of Saturn as a function of solar equation of anomaly. So, a close analysis of the calculations reveals details of the Tychonic planetary models unknown until now. The present study analyzes these drafts.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00407-020-00253-0","citationCount":"2","resultStr":"{\"title\":\"Tycho Brahe’s Calculi ad Corrigenda Elementa Orbitae Saturni and the technical aspects of his planetary model of Saturn\",\"authors\":\"Christián C. Carman\",\"doi\":\"10.1007/s00407-020-00253-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tycho Brahe was not just an observer; he was a skilled theoretical astronomer, as his lunar and solar models show. Still, even if he is recognized for proposing the Geoheliocentric system, little do we know of the technical details of his planetary models, probably because he died before publishing the last two volumes of his <i>Astronomiae Instaurandae Progymnasmata</i>, which he planned to devote to the planets. As it happens, however, there are some extant drafts of his calculations in Dreyer’s edition of Tycho’s <i>Opera Omnia</i> under the name <i>Calculi ad Corrigenda Elementa orbitae Saturni</i>, which, to the best of my knowledge, have not yet been analyzed before. In these manuscripts, Tycho starts with calculations based on the Prutenic Tables and makes a series of adjustments to the mean longitude, the longitude of the apogee, and the eccentricity to fit a series of observations of oppositions. In doing that, Tycho (1) describes and applies a new method for obtaining accurate values for the parameters of the superior planets, he (2) develops a divided eccentricity (not bisected) model of Saturn, similar to the one we know Longomontanus and Kepler applied to Mars, and finally (3) he realizes that the true position of the Sun somehow affects the motion of Saturn around the zodiac and develops a method to correct the position of Saturn as a function of solar equation of anomaly. So, a close analysis of the calculations reveals details of the Tychonic planetary models unknown until now. The present study analyzes these drafts.</p></div>\",\"PeriodicalId\":50982,\"journal\":{\"name\":\"Archive for History of Exact Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00407-020-00253-0\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for History of Exact Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00407-020-00253-0\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-020-00253-0","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 2

摘要

第谷·布拉赫不仅仅是一个观察者;正如他的月球和太阳模型所显示的那样,他是一位熟练的理论天文学家。尽管如此,即使他因提出地球日心系统而获得认可,我们对他的行星模型的技术细节知之甚少,可能是因为他在出版他计划专门研究行星的《天文学》的最后两卷之前去世了。然而,碰巧的是,在德雷尔版的第谷歌剧《Omnia》中,有一些现存的他的计算草稿,名为Calculi ad Corrigenda Elementa orbitae Saturni,据我所知,这些草稿以前还没有被分析过。在这些手稿中,第谷从普鲁特尼克表开始计算,并对平均经度、远地点经度和离心率进行了一系列调整,以适应一系列相反的观测结果。在这样做的过程中,第谷(1)描述并应用了一种新的方法来获得高级行星参数的精确值,他(2)开发了一个土星的分割离心率(非平分)模型,类似于我们所知道的应用于火星的朗哥蒙努斯和开普勒模型,最后(3)他意识到太阳的真实位置在某种程度上影响了土星绕黄道十二宫的运动,并开发了一种根据太阳异常方程校正土星位置的方法。因此,对计算结果的仔细分析揭示了迄今为止未知的第谷行星模型的细节。本研究分析了这些草案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tycho Brahe’s Calculi ad Corrigenda Elementa Orbitae Saturni and the technical aspects of his planetary model of Saturn

Tycho Brahe was not just an observer; he was a skilled theoretical astronomer, as his lunar and solar models show. Still, even if he is recognized for proposing the Geoheliocentric system, little do we know of the technical details of his planetary models, probably because he died before publishing the last two volumes of his Astronomiae Instaurandae Progymnasmata, which he planned to devote to the planets. As it happens, however, there are some extant drafts of his calculations in Dreyer’s edition of Tycho’s Opera Omnia under the name Calculi ad Corrigenda Elementa orbitae Saturni, which, to the best of my knowledge, have not yet been analyzed before. In these manuscripts, Tycho starts with calculations based on the Prutenic Tables and makes a series of adjustments to the mean longitude, the longitude of the apogee, and the eccentricity to fit a series of observations of oppositions. In doing that, Tycho (1) describes and applies a new method for obtaining accurate values for the parameters of the superior planets, he (2) develops a divided eccentricity (not bisected) model of Saturn, similar to the one we know Longomontanus and Kepler applied to Mars, and finally (3) he realizes that the true position of the Sun somehow affects the motion of Saturn around the zodiac and develops a method to correct the position of Saturn as a function of solar equation of anomaly. So, a close analysis of the calculations reveals details of the Tychonic planetary models unknown until now. The present study analyzes these drafts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for History of Exact Sciences
Archive for History of Exact Sciences 管理科学-科学史与科学哲学
CiteScore
1.30
自引率
20.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.
期刊最新文献
Quantum mechanics, radiation, and the equivalence proof The turbulence theory of P. Wehrlé and G. Dedebant (1934–1948): a forgotten probabilistic approach? A quantitative analysis of David Fabricius’ astronomical observations Free-energy calculations in condensed matter: from early challenges to the advent of umbrella sampling The practice of principles: Planck’s vision of a relativistic general dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1