利用距离门自由超导纳米线单光子探测器进行空间碎片激光测距

IF 1.9 4区 物理与天体物理 Q3 OPTICS Journal of the European Optical Society-Rapid Publications Pub Date : 2023-01-12 DOI:10.1051/jeos/2023002
Haitao Zhang, Yuqiang Li, Zhulian Li, Xiao-ping Pi, Yongzhang Yang, Rufeng Tang
{"title":"利用距离门自由超导纳米线单光子探测器进行空间碎片激光测距","authors":"Haitao Zhang, Yuqiang Li, Zhulian Li, Xiao-ping Pi, Yongzhang Yang, Rufeng Tang","doi":"10.1051/jeos/2023002","DOIUrl":null,"url":null,"abstract":"Space Debris Laser Ranging (DLR) is a technique to measure range to defunct satellites, rocket bodies or other space targets in orbits around Earth. The analysis on the probability shows that one of the reasons for the low success probability of DLR is the inaccurate orbital prediction of targets. Then it is proposed to use the Superconducting Nanowire Single-Photon Detector (SNSPD) running in automatic-recoverable range-gate-free mode, in which case, the effect of the accuracy of the target’s orbital prediction on the success probability of DLR is greatly reduced. In this way, 249 space debris were successfully detected and 532 passes of data were obtained. The smallest target detected was the space-debris (902) with an orbital altitude of about 1000 km and a Radar Cross Section (RCS) of 0.0446 m2. The farthest target detected was the space-debris (12445) with a large elliptical orbit and an RCS of 18.2505 m2, of which the range of the normal point (NPT) of the measured arc-segment on January 27, 2019 was 6260.805 km.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Space Debris Laser Ranging with range-gate-free Superconducting Nanowire Single-Photon Detector\",\"authors\":\"Haitao Zhang, Yuqiang Li, Zhulian Li, Xiao-ping Pi, Yongzhang Yang, Rufeng Tang\",\"doi\":\"10.1051/jeos/2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space Debris Laser Ranging (DLR) is a technique to measure range to defunct satellites, rocket bodies or other space targets in orbits around Earth. The analysis on the probability shows that one of the reasons for the low success probability of DLR is the inaccurate orbital prediction of targets. Then it is proposed to use the Superconducting Nanowire Single-Photon Detector (SNSPD) running in automatic-recoverable range-gate-free mode, in which case, the effect of the accuracy of the target’s orbital prediction on the success probability of DLR is greatly reduced. In this way, 249 space debris were successfully detected and 532 passes of data were obtained. The smallest target detected was the space-debris (902) with an orbital altitude of about 1000 km and a Radar Cross Section (RCS) of 0.0446 m2. The farthest target detected was the space-debris (12445) with a large elliptical orbit and an RCS of 18.2505 m2, of which the range of the normal point (NPT) of the measured arc-segment on January 27, 2019 was 6260.805 km.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023002\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023002","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

摘要

空间碎片激光测距(DLR)是一种测量绕地球轨道上失效卫星、火箭体或其他空间目标的距离的技术。概率分析表明,DLR成功概率低的原因之一是目标轨道预测不准确。然后,提出使用在自动可恢复距离无门模式下运行的超导纳米线单光子探测器(SNSPD),在这种情况下,目标轨道预测的准确性对DLR成功概率的影响大大降低。通过这种方式,成功探测到249个空间碎片,获得532次数据。探测到的最小目标是轨道高度约1000公里、雷达截面积0.0446平方米的空间碎片(902)。探测到的最远目标是大椭圆轨道的空间碎片(12445),RCS为18.2505 m2,其中2019年1月27日测得的弧段法向点(NPT)范围为6260.805 km。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space Debris Laser Ranging with range-gate-free Superconducting Nanowire Single-Photon Detector
Space Debris Laser Ranging (DLR) is a technique to measure range to defunct satellites, rocket bodies or other space targets in orbits around Earth. The analysis on the probability shows that one of the reasons for the low success probability of DLR is the inaccurate orbital prediction of targets. Then it is proposed to use the Superconducting Nanowire Single-Photon Detector (SNSPD) running in automatic-recoverable range-gate-free mode, in which case, the effect of the accuracy of the target’s orbital prediction on the success probability of DLR is greatly reduced. In this way, 249 space debris were successfully detected and 532 passes of data were obtained. The smallest target detected was the space-debris (902) with an orbital altitude of about 1000 km and a Radar Cross Section (RCS) of 0.0446 m2. The farthest target detected was the space-debris (12445) with a large elliptical orbit and an RCS of 18.2505 m2, of which the range of the normal point (NPT) of the measured arc-segment on January 27, 2019 was 6260.805 km.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
期刊最新文献
Estimating the Absorption and Waveguiding in Porous Slabs from Multi-modal Measurements Towards a portable setup for the on-site SERS detection of miRNAs Orbital Angular Momentum Multiplexing Architecture for OAM/SDM Passive Optical Networks Analysis of the recording of Fibonacci lenses on photopolymers with 3-D diffusion model A method of fluorescence molecular tomographic reconstruction via the second-order sensitivity matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1