火电厂多组分多流能源系统和装置建模的矩阵方法

IF 0.3 Q4 ENERGY & FUELS Problemele Energeticii Regionale Pub Date : 2021-11-01 DOI:10.52254/1857-0070.2021.4-52.06
A. Barochkin
{"title":"火电厂多组分多流能源系统和装置建模的矩阵方法","authors":"A. Barochkin","doi":"10.52254/1857-0070.2021.4-52.06","DOIUrl":null,"url":null,"abstract":"The aim of this work is to increase the operational efficiency of the multicomponent multithreaded power units and systems of the TPP using modeling, calculation and optimization. The goal is achieved by solving the following tasks: development of the tasks’ classification system and a unified methodology for the mathematical description of energy formation and mass flows’ processes in multicomponent and multithreaded power units of the TPP; development of a model of a steam turbine power unit; development of a model of heat and mass transfer processes in multi-stage multistream multiphase systems. The most significant results obtained were: the developed unified methodology for the matrix description of the processes of energy and mass flows’ formation in multicomponent multistream energy systems of the TPP. Within the framework of the proposed methodology, a model of a steam turbine power was developed; model solutions were obtained and analyzed in order to calculate the energy characteristics of a heating turbine unit, the reliability and validity of the proposed approach was shown, a mathematical model of multistream multi-stage heat exchange systems were developed. The significance of the results obtained consisted in the development of a simple but informative mathematical model of a thermal power plant turbine generator and a model of multistream multi-stage heat exchange systems, each stage of which can have an arbitrary number of input and output flows with a possible phase transition in heat carriers.ave an arbitrary number of input and output flows with a possible phase transition in heat carriers.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Method for Modelling of Multicomponent and Multistream Energy Systems and Installations of Thermal Power Plants\",\"authors\":\"A. Barochkin\",\"doi\":\"10.52254/1857-0070.2021.4-52.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to increase the operational efficiency of the multicomponent multithreaded power units and systems of the TPP using modeling, calculation and optimization. The goal is achieved by solving the following tasks: development of the tasks’ classification system and a unified methodology for the mathematical description of energy formation and mass flows’ processes in multicomponent and multithreaded power units of the TPP; development of a model of a steam turbine power unit; development of a model of heat and mass transfer processes in multi-stage multistream multiphase systems. The most significant results obtained were: the developed unified methodology for the matrix description of the processes of energy and mass flows’ formation in multicomponent multistream energy systems of the TPP. Within the framework of the proposed methodology, a model of a steam turbine power was developed; model solutions were obtained and analyzed in order to calculate the energy characteristics of a heating turbine unit, the reliability and validity of the proposed approach was shown, a mathematical model of multistream multi-stage heat exchange systems were developed. The significance of the results obtained consisted in the development of a simple but informative mathematical model of a thermal power plant turbine generator and a model of multistream multi-stage heat exchange systems, each stage of which can have an arbitrary number of input and output flows with a possible phase transition in heat carriers.ave an arbitrary number of input and output flows with a possible phase transition in heat carriers.\",\"PeriodicalId\":41974,\"journal\":{\"name\":\"Problemele Energeticii Regionale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemele Energeticii Regionale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52254/1857-0070.2021.4-52.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemele Energeticii Regionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52254/1857-0070.2021.4-52.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是通过建模、计算和优化来提高TPP的多组分多线程动力单元和系统的运行效率。该目标是通过解决以下任务来实现的:开发任务分类系统和统一的方法来描述TPP多组分和多线程动力单元中的能量形成和质量流过程;蒸汽轮机发电机组模型的开发;开发多级多流多相系统中的传热和传质过程模型。获得的最重要的结果是:开发了TPP多组分多流能量系统中能量流和质量流形成过程的矩阵描述的统一方法。在拟议方法的框架内,开发了一个蒸汽轮机功率模型;为了计算供热机组的能量特性,得到了模型解并进行了分析,验证了所提方法的可靠性和有效性,建立了多流多级换热系统的数学模型。所获得的结果的意义在于开发了一个简单但信息丰富的火力发电厂涡轮发电机的数学模型和一个多流多级热交换系统的模型,其每一级可以具有任意数量的在热载体中具有可能相变的输入流和输出流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matrix Method for Modelling of Multicomponent and Multistream Energy Systems and Installations of Thermal Power Plants
The aim of this work is to increase the operational efficiency of the multicomponent multithreaded power units and systems of the TPP using modeling, calculation and optimization. The goal is achieved by solving the following tasks: development of the tasks’ classification system and a unified methodology for the mathematical description of energy formation and mass flows’ processes in multicomponent and multithreaded power units of the TPP; development of a model of a steam turbine power unit; development of a model of heat and mass transfer processes in multi-stage multistream multiphase systems. The most significant results obtained were: the developed unified methodology for the matrix description of the processes of energy and mass flows’ formation in multicomponent multistream energy systems of the TPP. Within the framework of the proposed methodology, a model of a steam turbine power was developed; model solutions were obtained and analyzed in order to calculate the energy characteristics of a heating turbine unit, the reliability and validity of the proposed approach was shown, a mathematical model of multistream multi-stage heat exchange systems were developed. The significance of the results obtained consisted in the development of a simple but informative mathematical model of a thermal power plant turbine generator and a model of multistream multi-stage heat exchange systems, each stage of which can have an arbitrary number of input and output flows with a possible phase transition in heat carriers.ave an arbitrary number of input and output flows with a possible phase transition in heat carriers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
38
期刊最新文献
Reduction of Voltage Fluctuations in Electrical Networks Supplying Motors with a Rapidly Changing Load by Installing Longitudinal Compensation Batteries Intelligent System of Relay Protection of Electrical Network 6-10 kV with the Implementation of Automatic Correction of the Operation Set Point Energy-Efficient Modes of Dehydration of Pome Fruits during Microwave Treatment in Combination with Convection Congestion Management Using an Optimized Deep Convolution Neural Network in Deregulated Environment Study of the Efficiency of Heat-Supply Systems with Steam Turbine CHP Plants, Taking into Account Changes in the Temperature of the Delivery Water during Transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1