{"title":"分数阶抛物型偏微分方程的数值解法","authors":"J. Rashidinia, Elham Mohmedi","doi":"10.22034/CMDE.2021.41150.1787","DOIUrl":null,"url":null,"abstract":"In this paper, A reliable numerical scheme is developed and reviewed in order to obtain approximate solution of time fractional parabolic partial differential equations. The introduced scheme is based on Legendre tau spectral approximation and the time fractional derivative is employed in the Caputo sense. TheL2convergence analysis of the numerical method is analyzed. Numerical results for different examples are examined to verify the accuracy of spectral method and justification the theoretical analysis, and to compare with other existing methods in the literatures","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical solution for solving fractional parabolic partial differential equations\",\"authors\":\"J. Rashidinia, Elham Mohmedi\",\"doi\":\"10.22034/CMDE.2021.41150.1787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, A reliable numerical scheme is developed and reviewed in order to obtain approximate solution of time fractional parabolic partial differential equations. The introduced scheme is based on Legendre tau spectral approximation and the time fractional derivative is employed in the Caputo sense. TheL2convergence analysis of the numerical method is analyzed. Numerical results for different examples are examined to verify the accuracy of spectral method and justification the theoretical analysis, and to compare with other existing methods in the literatures\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.41150.1787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.41150.1787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical solution for solving fractional parabolic partial differential equations
In this paper, A reliable numerical scheme is developed and reviewed in order to obtain approximate solution of time fractional parabolic partial differential equations. The introduced scheme is based on Legendre tau spectral approximation and the time fractional derivative is employed in the Caputo sense. TheL2convergence analysis of the numerical method is analyzed. Numerical results for different examples are examined to verify the accuracy of spectral method and justification the theoretical analysis, and to compare with other existing methods in the literatures