{"title":"聚乙烯薄膜用水性油墨配方分析与优化","authors":"Jar Carlo C. Ramirez, Terence P. Tumolva","doi":"10.1186/s40563-017-0102-z","DOIUrl":null,"url":null,"abstract":"<p>Water-based ink formulations containing wax, surfactant, and defoamer additives were prepared and printed on polyethylene film substrates. Standard test methods for adhesion, rub resistance, and gloss were done on the printed polyethylene films. Quantitative methods for the assessment and evaluation of the three print properties were developed. Image analyses were done to quantify adhesion and rub resistance. Quantitative measurement was done to quantify gloss. Data were analyzed using mixture design modelling and optimization. Modelling results show that adhesion and gloss are described by special cubic model equations, while rub resistance is described by a linear model equation. Contour plots and 3D surface graphs were generated showing the response surfaces of the print properties. The effects of varying the mass fractions of wax, surfactant, and defoamer on adhesion, rub resistance, and gloss were determined. It was found that increasing wax increases rub resistance, while increasing surfactant increases gloss, and increasing defoamer increases adhesion. There is dependency found between the mass fraction of wax, surfactant and defoamer with respect to the rub resistance, adhesion and gloss. Multi-objective optimization revealed that optimum adhesion, rub resistance, and gloss is obtained by a formulation containing equal mass fractions of wax and surfactant but no defoamer.</p>","PeriodicalId":464,"journal":{"name":"Applied Adhesion Science","volume":"6 1","pages":""},"PeriodicalIF":1.6800,"publicationDate":"2018-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40563-017-0102-z","citationCount":"18","resultStr":"{\"title\":\"Analysis and optimization of water-based printing ink formulations for polyethylene films\",\"authors\":\"Jar Carlo C. Ramirez, Terence P. Tumolva\",\"doi\":\"10.1186/s40563-017-0102-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water-based ink formulations containing wax, surfactant, and defoamer additives were prepared and printed on polyethylene film substrates. Standard test methods for adhesion, rub resistance, and gloss were done on the printed polyethylene films. Quantitative methods for the assessment and evaluation of the three print properties were developed. Image analyses were done to quantify adhesion and rub resistance. Quantitative measurement was done to quantify gloss. Data were analyzed using mixture design modelling and optimization. Modelling results show that adhesion and gloss are described by special cubic model equations, while rub resistance is described by a linear model equation. Contour plots and 3D surface graphs were generated showing the response surfaces of the print properties. The effects of varying the mass fractions of wax, surfactant, and defoamer on adhesion, rub resistance, and gloss were determined. It was found that increasing wax increases rub resistance, while increasing surfactant increases gloss, and increasing defoamer increases adhesion. There is dependency found between the mass fraction of wax, surfactant and defoamer with respect to the rub resistance, adhesion and gloss. Multi-objective optimization revealed that optimum adhesion, rub resistance, and gloss is obtained by a formulation containing equal mass fractions of wax and surfactant but no defoamer.</p>\",\"PeriodicalId\":464,\"journal\":{\"name\":\"Applied Adhesion Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6800,\"publicationDate\":\"2018-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40563-017-0102-z\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Adhesion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40563-017-0102-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Adhesion Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40563-017-0102-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
Analysis and optimization of water-based printing ink formulations for polyethylene films
Water-based ink formulations containing wax, surfactant, and defoamer additives were prepared and printed on polyethylene film substrates. Standard test methods for adhesion, rub resistance, and gloss were done on the printed polyethylene films. Quantitative methods for the assessment and evaluation of the three print properties were developed. Image analyses were done to quantify adhesion and rub resistance. Quantitative measurement was done to quantify gloss. Data were analyzed using mixture design modelling and optimization. Modelling results show that adhesion and gloss are described by special cubic model equations, while rub resistance is described by a linear model equation. Contour plots and 3D surface graphs were generated showing the response surfaces of the print properties. The effects of varying the mass fractions of wax, surfactant, and defoamer on adhesion, rub resistance, and gloss were determined. It was found that increasing wax increases rub resistance, while increasing surfactant increases gloss, and increasing defoamer increases adhesion. There is dependency found between the mass fraction of wax, surfactant and defoamer with respect to the rub resistance, adhesion and gloss. Multi-objective optimization revealed that optimum adhesion, rub resistance, and gloss is obtained by a formulation containing equal mass fractions of wax and surfactant but no defoamer.
期刊介绍:
Applied Adhesion Science focuses on practical applications of adhesives, with special emphasis in fields such as oil industry, aerospace and biomedicine. Topics related to the phenomena of adhesion and the application of adhesive materials are welcome, especially in biomedical areas such as adhesive dentistry. Both theoretical and experimental works are considered for publication. Applied Adhesion Science is a peer-reviewed open access journal published under the SpringerOpen brand. The journal''s open access policy offers a fast publication workflow whilst maintaining rigorous peer review process.