基于数值流模型的地下水评价:以苏丹卡萨拉州Gash亚盆地为例

Q4 Multidisciplinary ASM Science Journal Pub Date : 2023-04-12 DOI:10.32802/asmscj.2023.1459
Adill Balla Adill Elkrail, Fathelrahman Ali Bireir, Khalid Elsir Ahmed Nayl
{"title":"基于数值流模型的地下水评价:以苏丹卡萨拉州Gash亚盆地为例","authors":"Adill Balla Adill Elkrail, Fathelrahman Ali Bireir, Khalid Elsir Ahmed Nayl","doi":"10.32802/asmscj.2023.1459","DOIUrl":null,"url":null,"abstract":"The main objective of groundwater modelling in Gash River Sub-basin, is to investigate the effect of hydrologic, hydrogeological parameters and stresses on hydrodynamic behaviour through the implementation of a realistic three-dimensional groundwater flow model.  Severe decline of water level due to uncontrollable heavy abstraction, exposes a water scarcity problem especially in summer seasons. The model was developed for four geological layers encompassing two aquifer zones. The improved three-dimensional visual MODFLOW Code was selected, implemented and run using WHS method to solve the finite difference equation using trail-and-error calibration procedure at Kassala Area. The transient model was successfully calibrated with acceptable results of model calibration criteria. The contour maps of the simulated heads were performed as potentiometric surface. The general flow direction of the groundwater is from southeast towards northwest part of the area and from Gash River course towards the east and west directions as detected from gradual decreasing of potential line’s values in those directions, confirming the aquifer recharge from Gash River. The similarity of potentiometric surface contour maps of the two aquifers confirm the aquifers hydraulic interactions. It is found that the increasing pumping rate caused considerable increase in drawdown as detected from pumping rate incremental scenarios. Moreover, incremental pumping rate scenarios also reflected increasing river leakage into the aquifer system due to disturbance of water balance due to water level decline. The components of water budgets were calculated and its percentage was performed for the hydrologic balance. The difference between inflow and outflow of the water balance shows a deficit in most stress periods of the model simulations. Calibration fitness was accomplished at most of the observation wells suggesting that the groundwater model is an accurate representation of the actual historic groundwater system and confirm the validity of the model to forecasting purposes. It was found that the model is more sensitive to hydraulic conductivity and least sensitive to specific yield (Sy). Hence, precaution should be revealed for hydraulic conductivity in forecasting model usage.","PeriodicalId":38804,"journal":{"name":"ASM Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groundwater Assessment using Numerical Flow Model: A Case Study in Gash Sub-Basin-Kassala State, Sudan\",\"authors\":\"Adill Balla Adill Elkrail, Fathelrahman Ali Bireir, Khalid Elsir Ahmed Nayl\",\"doi\":\"10.32802/asmscj.2023.1459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of groundwater modelling in Gash River Sub-basin, is to investigate the effect of hydrologic, hydrogeological parameters and stresses on hydrodynamic behaviour through the implementation of a realistic three-dimensional groundwater flow model.  Severe decline of water level due to uncontrollable heavy abstraction, exposes a water scarcity problem especially in summer seasons. The model was developed for four geological layers encompassing two aquifer zones. The improved three-dimensional visual MODFLOW Code was selected, implemented and run using WHS method to solve the finite difference equation using trail-and-error calibration procedure at Kassala Area. The transient model was successfully calibrated with acceptable results of model calibration criteria. The contour maps of the simulated heads were performed as potentiometric surface. The general flow direction of the groundwater is from southeast towards northwest part of the area and from Gash River course towards the east and west directions as detected from gradual decreasing of potential line’s values in those directions, confirming the aquifer recharge from Gash River. The similarity of potentiometric surface contour maps of the two aquifers confirm the aquifers hydraulic interactions. It is found that the increasing pumping rate caused considerable increase in drawdown as detected from pumping rate incremental scenarios. Moreover, incremental pumping rate scenarios also reflected increasing river leakage into the aquifer system due to disturbance of water balance due to water level decline. The components of water budgets were calculated and its percentage was performed for the hydrologic balance. The difference between inflow and outflow of the water balance shows a deficit in most stress periods of the model simulations. Calibration fitness was accomplished at most of the observation wells suggesting that the groundwater model is an accurate representation of the actual historic groundwater system and confirm the validity of the model to forecasting purposes. It was found that the model is more sensitive to hydraulic conductivity and least sensitive to specific yield (Sy). Hence, precaution should be revealed for hydraulic conductivity in forecasting model usage.\",\"PeriodicalId\":38804,\"journal\":{\"name\":\"ASM Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32802/asmscj.2023.1459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32802/asmscj.2023.1459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

Gash河次流域地下水模拟的主要目的是通过实现真实的三维地下水流动模型,研究水文、水文地质参数和应力对水动力行为的影响。由于不可控的大量开采,水位严重下降,暴露出水资源短缺问题,特别是在夏季。该模型是针对包含两个含水层的四个地质层开发的。选择改进的三维可视化MODFLOW代码,使用WHS方法实现并运行,在Kassala地区使用跟踪误差校准程序求解有限差分方程。对瞬态模型进行了成功的校正,校正结果符合模型校正标准。模拟头部的等高线图作为电位面。地下水的总体流动方向为东南向西北方向流动,从两个方向的位势线值逐渐减小,从东、西两个方向由切什河河道流动,证实了切什河对含水层的补给。两个含水层电位面等值线图的相似性证实了含水层的水力相互作用。从泵送速率增加的情况可以看出,泵送速率的增加会导致压降的显著增加。此外,增加抽水速率情景也反映了由于水位下降导致水量平衡受到干扰而增加的河流渗漏到含水层系统。计算了水收支的组成部分,并对其百分比进行了计算,以达到水文平衡。在模型模拟的大多数应力期,水平衡流入和流出的差值显示出亏损。大部分观测井均完成了标定拟合,表明该模型能较准确地反映历史地下水系统的实际情况,证实了该模型对预测的有效性。结果表明,该模型对水力导率较敏感,对比屈服(Sy)较不敏感。因此,在使用预测模型时应注意水力导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Groundwater Assessment using Numerical Flow Model: A Case Study in Gash Sub-Basin-Kassala State, Sudan
The main objective of groundwater modelling in Gash River Sub-basin, is to investigate the effect of hydrologic, hydrogeological parameters and stresses on hydrodynamic behaviour through the implementation of a realistic three-dimensional groundwater flow model.  Severe decline of water level due to uncontrollable heavy abstraction, exposes a water scarcity problem especially in summer seasons. The model was developed for four geological layers encompassing two aquifer zones. The improved three-dimensional visual MODFLOW Code was selected, implemented and run using WHS method to solve the finite difference equation using trail-and-error calibration procedure at Kassala Area. The transient model was successfully calibrated with acceptable results of model calibration criteria. The contour maps of the simulated heads were performed as potentiometric surface. The general flow direction of the groundwater is from southeast towards northwest part of the area and from Gash River course towards the east and west directions as detected from gradual decreasing of potential line’s values in those directions, confirming the aquifer recharge from Gash River. The similarity of potentiometric surface contour maps of the two aquifers confirm the aquifers hydraulic interactions. It is found that the increasing pumping rate caused considerable increase in drawdown as detected from pumping rate incremental scenarios. Moreover, incremental pumping rate scenarios also reflected increasing river leakage into the aquifer system due to disturbance of water balance due to water level decline. The components of water budgets were calculated and its percentage was performed for the hydrologic balance. The difference between inflow and outflow of the water balance shows a deficit in most stress periods of the model simulations. Calibration fitness was accomplished at most of the observation wells suggesting that the groundwater model is an accurate representation of the actual historic groundwater system and confirm the validity of the model to forecasting purposes. It was found that the model is more sensitive to hydraulic conductivity and least sensitive to specific yield (Sy). Hence, precaution should be revealed for hydraulic conductivity in forecasting model usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASM Science Journal
ASM Science Journal Multidisciplinary-Multidisciplinary
CiteScore
0.60
自引率
0.00%
发文量
23
期刊介绍: The ASM Science Journal publishes advancements in the broad fields of medical, engineering, earth, mathematical, physical, chemical and agricultural sciences as well as ICT. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientific articles published will be on the basis of originality, importance and significant contribution to science, scientific research and the public. Scientists who subscribe to the fields listed above will be the source of papers to the journal. All articles will be reviewed by at least two experts in that particular field.
期刊最新文献
Ergonomics Risk Assessment Methods to Minimise Musculoskeletal Disorders: Barecore Workers in Indonesia Hyaluronidase Involvement in Streptococcus pneumoniae Biofilm Activity Analysing the Determinants of Job Selection Preferences among Quantitative Science Students in Malaysia using Multi-Criteria Decision Making (MCDM) Effect of Column Deformation for Steel Frames with Semi-rigid Connection Comparison of Thermoplastic Filaments for 3D Printing in The Development of Ventilator During Ventilator Shortage Situation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1