铜-水纳米流体流动中纳米颗粒电离传热传质优化的计算模型

Q4 Physics and Astronomy JP Journal of Heat and Mass Transfer Pub Date : 2023-01-23 DOI:10.17654/0973576323001
Aditya Kumar Pati, A. Misra, S. Mishra, Sujit Mishra, R. Sahu, S. Panda
{"title":"铜-水纳米流体流动中纳米颗粒电离传热传质优化的计算模型","authors":"Aditya Kumar Pati, A. Misra, S. Mishra, Sujit Mishra, R. Sahu, S. Panda","doi":"10.17654/0973576323001","DOIUrl":null,"url":null,"abstract":"An exploration is carried out to model the heat and mass transfer optimization of Cu-water nanofluid in a natural convective flow over a vertical plane wall with Cu-nanoparticle ionization. Nanoparticle ionization mechanism has been included in the modelling of nanofluid flow. Using the similarity transformation method, the basic two-dimensional momentum, energy, and nanoparticle concentration equations have been transferred to a set of locally similar equations and solved numerically using MATLAB bvp4c function. The impacts of the nanoparticle ionization on the nanofluid flow parameters, skin- friction, heat transfer and nanoparticle mass transfer coefficients are determined and shown graphically. The major outcome of the present study reveals that an increment in the ionization parameter elevates the skin-friction, heat and mass transfer rate from the wall to nanofluid. It is concluded that Cu-nanoparticle ionization contributes towards the augmentation of heat and mass transfer capabilities of Cu-water nanofluid.","PeriodicalId":39006,"journal":{"name":"JP Journal of Heat and Mass Transfer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPUTATIONAL MODELLING OF HEAT AND MASS TRANSFER OPTIMIZATION IN COPPER WATER NANOFLUID FLOW WITH NANOPARTICLE IONIZATION\",\"authors\":\"Aditya Kumar Pati, A. Misra, S. Mishra, Sujit Mishra, R. Sahu, S. Panda\",\"doi\":\"10.17654/0973576323001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An exploration is carried out to model the heat and mass transfer optimization of Cu-water nanofluid in a natural convective flow over a vertical plane wall with Cu-nanoparticle ionization. Nanoparticle ionization mechanism has been included in the modelling of nanofluid flow. Using the similarity transformation method, the basic two-dimensional momentum, energy, and nanoparticle concentration equations have been transferred to a set of locally similar equations and solved numerically using MATLAB bvp4c function. The impacts of the nanoparticle ionization on the nanofluid flow parameters, skin- friction, heat transfer and nanoparticle mass transfer coefficients are determined and shown graphically. The major outcome of the present study reveals that an increment in the ionization parameter elevates the skin-friction, heat and mass transfer rate from the wall to nanofluid. It is concluded that Cu-nanoparticle ionization contributes towards the augmentation of heat and mass transfer capabilities of Cu-water nanofluid.\",\"PeriodicalId\":39006,\"journal\":{\"name\":\"JP Journal of Heat and Mass Transfer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JP Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0973576323001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JP Journal of Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0973576323001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

对铜-水纳米流体在垂直平面壁上自然对流中的传热和传质优化进行了探索。纳米颗粒电离机制已被纳入纳米流体流动的建模中。使用相似变换方法,将基本的二维动量、能量和纳米颗粒浓度方程转换为一组局部相似方程,并使用MATLAB bvp4c函数进行数值求解。确定了纳米颗粒电离对纳米流体流动参数、表面摩擦、传热和纳米颗粒传质系数的影响,并用图形表示。本研究的主要结果表明,电离参数的增加会提高从壁到纳米流体的皮肤摩擦、热量和质量传递速率。结果表明,铜纳米粒子的电离有助于提高铜-水纳米流体的传热传质能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPUTATIONAL MODELLING OF HEAT AND MASS TRANSFER OPTIMIZATION IN COPPER WATER NANOFLUID FLOW WITH NANOPARTICLE IONIZATION
An exploration is carried out to model the heat and mass transfer optimization of Cu-water nanofluid in a natural convective flow over a vertical plane wall with Cu-nanoparticle ionization. Nanoparticle ionization mechanism has been included in the modelling of nanofluid flow. Using the similarity transformation method, the basic two-dimensional momentum, energy, and nanoparticle concentration equations have been transferred to a set of locally similar equations and solved numerically using MATLAB bvp4c function. The impacts of the nanoparticle ionization on the nanofluid flow parameters, skin- friction, heat transfer and nanoparticle mass transfer coefficients are determined and shown graphically. The major outcome of the present study reveals that an increment in the ionization parameter elevates the skin-friction, heat and mass transfer rate from the wall to nanofluid. It is concluded that Cu-nanoparticle ionization contributes towards the augmentation of heat and mass transfer capabilities of Cu-water nanofluid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JP Journal of Heat and Mass Transfer
JP Journal of Heat and Mass Transfer Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
1.00
自引率
0.00%
发文量
51
期刊介绍: The JP Journal of Heat and Mass Transfer publishes peer-reviewed articles in heat and mass transfer which enriches basic ideas in this field and provides applicable tools to its users. Articles both theoretical and experimental in nature covering different aspects in the area of heat and mass transfer such as heat transfer in phase change phenomena, machinery and welding operations, porous media and turbulence are considered. Priority is given to those which employ or generate fundamental techniques useful to promote applications in different disciplines of engineering, electronics, communication systems, environmental sciences and climatology. Because a combination of two or more different technologies in a single device may result into a significant development, the journal extends its scope to include papers with the utility value in electronics and communication system. In this spirit, we are devoting certain number of issues to ‘Mechanical Systems and ICT – Convergence’. Survey articles dealing with certain issues in the context of current developments in heat and mass transfer together with their applications in interdisciplinary topics are also entertained.
期刊最新文献
THERMO-PHYSICAL ANALYSIS OF MIXES OF PET WASTE AND RED EARTH EXPERIMENTAL INVESTIGATION OF CuO+WATER NANOFLUID CONCENTRATIONS ON HEAT TRANSFER PARAMETERS IN CLEANROOM AIR HANDLING UNITS NUMERICAL STUDY OF CARBON NANOTUBES SUSPENDED NANOFLUID FLOW PAST A SURFACE WITH DARCY-FORCHHEIMER POROUS MEDIUM: AN APPLICATION TO HEAT EXCHANGER DESIGN ENHANCING ENERGETIC EFFICIENCY: ADVANCING MORPHOLOGICAL AND THERMAL STRUCTURAL PROPERTIES OF FLY ASH AND CERAMIC-BASED MATERIALS AXISYMMETRIC HYBRID NANOFLUID FLOW OVER A RADIALLY SHRINKING DISK WITH HEAT GENERATION AND MAGNETIC FIELD EFFECTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1