多功能双级并网光伏系统的超扭滑模控制

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Advances in Electrical and Electronic Engineering Pub Date : 2022-10-03 DOI:10.15598/aeee.v20i3.4454
Brahim Deffaf, F. Hamoudi, Naamane Debdouche, Yacine Ayachi Amor, S. Medjmadj
{"title":"多功能双级并网光伏系统的超扭滑模控制","authors":"Brahim Deffaf, F. Hamoudi, Naamane Debdouche, Yacine Ayachi Amor, S. Medjmadj","doi":"10.15598/aeee.v20i3.4454","DOIUrl":null,"url":null,"abstract":"This paper proposes a super-twisting sliding mode control for a multifunctional system that includes a Photovoltaic (PV) system connected to the grid through the Active Power Filter (APF). The latter is implemented to improve the power quality in the grid side, and injecting the provided photovoltaic power into the grid. Sliding mode control is known as a powerful control with good performance in transient and steady-state conditions. In this work, a Super-Twisting Sliding Mode Control (ST-SMC) is applied to extract the maximum power from the PV source, corresponding to the irradiation level, as well as to the threephase inverter-based-APF power control. For the system to inject the generated power from the PV source into the grid with respect to the international standards, fulfilling the active power filtering, synchronous reference frame theory is used to generate the appropriate reference signals for harmonic and reactive power compensation. To test the multi-functionality of the system (PV-APF), this one is connected to a grid supplying nonlinear loads that absorb non-sinusoidal currents. Through the simulation results, it has successfully achieved the multi-functionality of the proposed system under steady-state and dynamic conditions. The results also show the effectiveness and moderation of the proposed super-twisting sliding mode control. Furthermore, a comparative study has been established over the conventional PI controller, showing the clear superiority of the proposed control in every aspect.","PeriodicalId":7268,"journal":{"name":"Advances in Electrical and Electronic Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Super-twisting Sliding Mode Control for a Multifunctional Double Stage Grid-connected Photovoltaic System\",\"authors\":\"Brahim Deffaf, F. Hamoudi, Naamane Debdouche, Yacine Ayachi Amor, S. Medjmadj\",\"doi\":\"10.15598/aeee.v20i3.4454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a super-twisting sliding mode control for a multifunctional system that includes a Photovoltaic (PV) system connected to the grid through the Active Power Filter (APF). The latter is implemented to improve the power quality in the grid side, and injecting the provided photovoltaic power into the grid. Sliding mode control is known as a powerful control with good performance in transient and steady-state conditions. In this work, a Super-Twisting Sliding Mode Control (ST-SMC) is applied to extract the maximum power from the PV source, corresponding to the irradiation level, as well as to the threephase inverter-based-APF power control. For the system to inject the generated power from the PV source into the grid with respect to the international standards, fulfilling the active power filtering, synchronous reference frame theory is used to generate the appropriate reference signals for harmonic and reactive power compensation. To test the multi-functionality of the system (PV-APF), this one is connected to a grid supplying nonlinear loads that absorb non-sinusoidal currents. Through the simulation results, it has successfully achieved the multi-functionality of the proposed system under steady-state and dynamic conditions. The results also show the effectiveness and moderation of the proposed super-twisting sliding mode control. Furthermore, a comparative study has been established over the conventional PI controller, showing the clear superiority of the proposed control in every aspect.\",\"PeriodicalId\":7268,\"journal\":{\"name\":\"Advances in Electrical and Electronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15598/aeee.v20i3.4454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15598/aeee.v20i3.4454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

针对光伏系统通过有源电力滤波器(APF)接入电网的多功能系统,提出了一种超扭转滑模控制方法。后者的实施是为了改善电网侧的电能质量,并将提供的光伏电力注入电网。滑模控制是一种功能强大的控制方法,在瞬态和稳态条件下都具有良好的控制性能。在这项工作中,应用超扭转滑模控制(ST-SMC)从光伏电源中提取与辐照水平相对应的最大功率,以及基于三相逆变器的apf功率控制。为了使系统按照国际标准将光伏电源产生的电能注入电网,实现有功滤波,采用同步参考系理论产生合适的谐波和无功补偿参考信号。为了测试该系统(PV-APF)的多功能性,该系统连接到一个提供非线性负载的电网,该负载吸收非正弦电流。通过仿真结果,成功地实现了系统在稳态和动态条件下的多功能性。结果还表明了所提出的超扭转滑模控制的有效性和可调性。此外,与传统PI控制器进行了比较研究,表明所提出的控制在各个方面都具有明显的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-twisting Sliding Mode Control for a Multifunctional Double Stage Grid-connected Photovoltaic System
This paper proposes a super-twisting sliding mode control for a multifunctional system that includes a Photovoltaic (PV) system connected to the grid through the Active Power Filter (APF). The latter is implemented to improve the power quality in the grid side, and injecting the provided photovoltaic power into the grid. Sliding mode control is known as a powerful control with good performance in transient and steady-state conditions. In this work, a Super-Twisting Sliding Mode Control (ST-SMC) is applied to extract the maximum power from the PV source, corresponding to the irradiation level, as well as to the threephase inverter-based-APF power control. For the system to inject the generated power from the PV source into the grid with respect to the international standards, fulfilling the active power filtering, synchronous reference frame theory is used to generate the appropriate reference signals for harmonic and reactive power compensation. To test the multi-functionality of the system (PV-APF), this one is connected to a grid supplying nonlinear loads that absorb non-sinusoidal currents. Through the simulation results, it has successfully achieved the multi-functionality of the proposed system under steady-state and dynamic conditions. The results also show the effectiveness and moderation of the proposed super-twisting sliding mode control. Furthermore, a comparative study has been established over the conventional PI controller, showing the clear superiority of the proposed control in every aspect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Electrical and Electronic Engineering
Advances in Electrical and Electronic Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
33.30%
发文量
30
审稿时长
25 weeks
期刊最新文献
A HYBRID PREDICTIVE ARCHITECTURE FORMULATION USING DEEP LEARNING AND HISTOGRAM OF GRADIENTS FOR COMPOUND EMOTION RECOGNITION Self-Energy Recycling in DF Full-Duplex Relay Network: Security-Reliability Analysis Modeling, Identification and Validation of the Modified Magnetic Levitation Model ANALYSIS OF HARMONIC MITIGATION TECHNIQUES FOR CASCADED ASYMMETRIC INVERTERS OPTIMAL ROOFTOP PHOTOVOLTAIC SYSTEM PLACEMENT TO MINIMIZE MONTHLY USED ENERGY COSTS FOR HOUSEHOLDS IN VIETNAM’S CITIES AND TOWNS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1