阶约束非iid有序随机变量的控制精度Gibbs抽样

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2020-12-31 DOI:10.1515/mcma-2022-2121
J. Corcoran, Caleb Miller
{"title":"阶约束非iid有序随机变量的控制精度Gibbs抽样","authors":"J. Corcoran, Caleb Miller","doi":"10.1515/mcma-2022-2121","DOIUrl":null,"url":null,"abstract":"Abstract Order statistics arising from 𝑚 independent but not identically distributed random variables are typically constructed by arranging some X 1 , X 2 , … , X m X_{1},X_{2},\\ldots,X_{m} , with X i X_{i} having distribution function F i ⁢ ( x ) F_{i}(x) , in increasing order denoted as X ( 1 ) ≤ X ( 2 ) ≤ ⋯ ≤ X ( m ) X_{(1)}\\leq X_{(2)}\\leq\\cdots\\leq X_{(m)} . In this case, X ( i ) X_{(i)} is not necessarily associated with F i ⁢ ( x ) F_{i}(x) . Assuming one can simulate values from each distribution, one can generate such “non-iid” order statistics by simulating X i X_{i} from F i F_{i} , for i = 1 , 2 , … , m i=1,2,\\ldots,m , and arranging them in order. In this paper, we consider the problem of simulating ordered values X ( 1 ) , X ( 2 ) , … , X ( m ) X_{(1)},X_{(2)},\\ldots,X_{(m)} such that the marginal distribution of X ( i ) X_{(i)} is F i ⁢ ( x ) F_{i}(x) . This problem arises in Bayesian principal components analysis (BPCA) where the X i X_{i} are ordered eigenvalues that are a posteriori independent but not identically distributed. We propose a novel coupling-from-the-past algorithm to “perfectly” (up to computable order of accuracy) simulate such order-constrained non-iid order statistics. We demonstrate the effectiveness of our approach for several examples, including the BPCA problem.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"279 - 292"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled accuracy Gibbs sampling of order-constrained non-iid ordered random variates\",\"authors\":\"J. Corcoran, Caleb Miller\",\"doi\":\"10.1515/mcma-2022-2121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Order statistics arising from 𝑚 independent but not identically distributed random variables are typically constructed by arranging some X 1 , X 2 , … , X m X_{1},X_{2},\\\\ldots,X_{m} , with X i X_{i} having distribution function F i ⁢ ( x ) F_{i}(x) , in increasing order denoted as X ( 1 ) ≤ X ( 2 ) ≤ ⋯ ≤ X ( m ) X_{(1)}\\\\leq X_{(2)}\\\\leq\\\\cdots\\\\leq X_{(m)} . In this case, X ( i ) X_{(i)} is not necessarily associated with F i ⁢ ( x ) F_{i}(x) . Assuming one can simulate values from each distribution, one can generate such “non-iid” order statistics by simulating X i X_{i} from F i F_{i} , for i = 1 , 2 , … , m i=1,2,\\\\ldots,m , and arranging them in order. In this paper, we consider the problem of simulating ordered values X ( 1 ) , X ( 2 ) , … , X ( m ) X_{(1)},X_{(2)},\\\\ldots,X_{(m)} such that the marginal distribution of X ( i ) X_{(i)} is F i ⁢ ( x ) F_{i}(x) . This problem arises in Bayesian principal components analysis (BPCA) where the X i X_{i} are ordered eigenvalues that are a posteriori independent but not identically distributed. We propose a novel coupling-from-the-past algorithm to “perfectly” (up to computable order of accuracy) simulate such order-constrained non-iid order statistics. We demonstrate the effectiveness of our approach for several examples, including the BPCA problem.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"279 - 292\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

由𝑚独立但非同分布的随机变量产生的序统计量通常是通过排列一些x1, x2,…,X m X_来构造的{1}, x_{2},\ldots, x_{m} , X i X_{I} 它的分布函数是F i∑(x) F_{I}(x),按递增顺序表示为x(1)≤x(2)≤⋯≤x (m) X_{(1)}\leq x_{(2)}\leq\cdots\leq x_{(m)} 。在这种情况下,X (i) X_{(i)} 不一定与F i¹(x) F_相关{I}(x)。假设可以模拟每个分布的值,可以通过模拟X i X_来生成这种“非id”顺序统计量{I} 从F到F{I} ,对于I =1,2,…,m I =1,2,\ldots,m,并按顺序排列它们。本文考虑了模拟有序值X (1), X(2),…,X (m) X_的问题{(1)}, x_{(2)},\ldots, x_{(m)} 使得X (i)的边际分布为{(i)} F i乘以(x)是F_{I}(x)。这个问题出现在贝叶斯主成分分析(BPCA)中,其中X i X_{I} 是后验独立但不同分布的有序特征值。我们提出了一种新的从过去的耦合算法来“完美地”(达到可计算的精度顺序)模拟这种顺序约束的非id顺序统计量。我们通过几个例子展示了我们的方法的有效性,包括BPCA问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlled accuracy Gibbs sampling of order-constrained non-iid ordered random variates
Abstract Order statistics arising from 𝑚 independent but not identically distributed random variables are typically constructed by arranging some X 1 , X 2 , … , X m X_{1},X_{2},\ldots,X_{m} , with X i X_{i} having distribution function F i ⁢ ( x ) F_{i}(x) , in increasing order denoted as X ( 1 ) ≤ X ( 2 ) ≤ ⋯ ≤ X ( m ) X_{(1)}\leq X_{(2)}\leq\cdots\leq X_{(m)} . In this case, X ( i ) X_{(i)} is not necessarily associated with F i ⁢ ( x ) F_{i}(x) . Assuming one can simulate values from each distribution, one can generate such “non-iid” order statistics by simulating X i X_{i} from F i F_{i} , for i = 1 , 2 , … , m i=1,2,\ldots,m , and arranging them in order. In this paper, we consider the problem of simulating ordered values X ( 1 ) , X ( 2 ) , … , X ( m ) X_{(1)},X_{(2)},\ldots,X_{(m)} such that the marginal distribution of X ( i ) X_{(i)} is F i ⁢ ( x ) F_{i}(x) . This problem arises in Bayesian principal components analysis (BPCA) where the X i X_{i} are ordered eigenvalues that are a posteriori independent but not identically distributed. We propose a novel coupling-from-the-past algorithm to “perfectly” (up to computable order of accuracy) simulate such order-constrained non-iid order statistics. We demonstrate the effectiveness of our approach for several examples, including the BPCA problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1