{"title":"圆数值范围的部分等距","authors":"E. Wegert, I. Spitkovsky","doi":"10.1515/conop-2020-0121","DOIUrl":null,"url":null,"abstract":"Abstract In their LAMA 2016 paper Gau, Wang and Wu conjectured that a partial isometry A acting on ℂn cannot have a circular numerical range with a non-zero center, and proved this conjecture for n ≤ 4. We prove it for operators with rank A = n − 1 and any n. The proof is based on the unitary similarity of A to a compressed shift operator SB generated by a finite Blaschke product B. We then use the description of the numerical range of SB as intersection of Poncelet polygons, a special representation of Blaschke products related to boundary interpolation, and an explicit formula for the barycenter of the vertices of Poncelet polygons involving elliptic functions.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"8 1","pages":"176 - 186"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On partial isometries with circular numerical range\",\"authors\":\"E. Wegert, I. Spitkovsky\",\"doi\":\"10.1515/conop-2020-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In their LAMA 2016 paper Gau, Wang and Wu conjectured that a partial isometry A acting on ℂn cannot have a circular numerical range with a non-zero center, and proved this conjecture for n ≤ 4. We prove it for operators with rank A = n − 1 and any n. The proof is based on the unitary similarity of A to a compressed shift operator SB generated by a finite Blaschke product B. We then use the description of the numerical range of SB as intersection of Poncelet polygons, a special representation of Blaschke products related to boundary interpolation, and an explicit formula for the barycenter of the vertices of Poncelet polygons involving elliptic functions.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"8 1\",\"pages\":\"176 - 186\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2020-0121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On partial isometries with circular numerical range
Abstract In their LAMA 2016 paper Gau, Wang and Wu conjectured that a partial isometry A acting on ℂn cannot have a circular numerical range with a non-zero center, and proved this conjecture for n ≤ 4. We prove it for operators with rank A = n − 1 and any n. The proof is based on the unitary similarity of A to a compressed shift operator SB generated by a finite Blaschke product B. We then use the description of the numerical range of SB as intersection of Poncelet polygons, a special representation of Blaschke products related to boundary interpolation, and an explicit formula for the barycenter of the vertices of Poncelet polygons involving elliptic functions.