{"title":"气候变暖对泥炭池和洼地微生物环功能的影响:中观实验","authors":"Tomasz Mieczan, Monika Tarkowska-Kukuryk","doi":"10.1002/iroh.202002044","DOIUrl":null,"url":null,"abstract":"<p>Climate change models predict a possible increase in air temperature of 2–8°C. This means that global warming will significantly affect the functioning of various types of hydrogenic ecosystems. However, the effect of the temperature increase on microbial loop function in small water bodies associated with peat ecosystems (peat pools and <i>Sphagnum</i> hollows) is still unknown. We used mesocosm experiments (control and treatments with a 2°C, 4°C and 8°C temperature increase) to determine the response of bacterioplankton, flagellates, testate amoebae and ciliates to simulated temperature changes, taking into account seasonal variation in the temperate climate zone. The simulated increase in climate warming increased the species richness of ciliates and the abundance of bacteria, flagellates and ciliates. In contrast, there was a decrease in the species number and abundance of testate amoebae, the top predators in peat ecosystems. The sensitivity of the various microbial groups to temperature was size-dependent; large-sized testate amoebae declined under warming. These shifts caused a decrease in the predator–prey mass ratio. An increase in the abundance of top predators promotes increased abundance of ciliates, and thus changes the architecture of the food web. At the same time, we observed the increase in phycoflora biomass thus can cancel the potential negative effects of warming on heterotrophic microbial activity. So, the potential effect of warming on the C budgets of peat pools and hollows is evident. A better understanding of what regulates microbial populations and activity in small reservoirs in peat bogs and unravelling of these fundamental mechanisms are particularly critical to more accurately predict how peat bogs will respond to climate disturbances.</p>","PeriodicalId":54928,"journal":{"name":"International Review of Hydrobiology","volume":"106 2","pages":"106-120"},"PeriodicalIF":0.9000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/iroh.202002044","citationCount":"1","resultStr":"{\"title\":\"The effect of climate warming on microbial loop function in peat pools and Sphagnum hollows: Mesocosm experiments\",\"authors\":\"Tomasz Mieczan, Monika Tarkowska-Kukuryk\",\"doi\":\"10.1002/iroh.202002044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change models predict a possible increase in air temperature of 2–8°C. This means that global warming will significantly affect the functioning of various types of hydrogenic ecosystems. However, the effect of the temperature increase on microbial loop function in small water bodies associated with peat ecosystems (peat pools and <i>Sphagnum</i> hollows) is still unknown. We used mesocosm experiments (control and treatments with a 2°C, 4°C and 8°C temperature increase) to determine the response of bacterioplankton, flagellates, testate amoebae and ciliates to simulated temperature changes, taking into account seasonal variation in the temperate climate zone. The simulated increase in climate warming increased the species richness of ciliates and the abundance of bacteria, flagellates and ciliates. In contrast, there was a decrease in the species number and abundance of testate amoebae, the top predators in peat ecosystems. The sensitivity of the various microbial groups to temperature was size-dependent; large-sized testate amoebae declined under warming. These shifts caused a decrease in the predator–prey mass ratio. An increase in the abundance of top predators promotes increased abundance of ciliates, and thus changes the architecture of the food web. At the same time, we observed the increase in phycoflora biomass thus can cancel the potential negative effects of warming on heterotrophic microbial activity. So, the potential effect of warming on the C budgets of peat pools and hollows is evident. A better understanding of what regulates microbial populations and activity in small reservoirs in peat bogs and unravelling of these fundamental mechanisms are particularly critical to more accurately predict how peat bogs will respond to climate disturbances.</p>\",\"PeriodicalId\":54928,\"journal\":{\"name\":\"International Review of Hydrobiology\",\"volume\":\"106 2\",\"pages\":\"106-120\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/iroh.202002044\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Hydrobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/iroh.202002044\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Hydrobiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iroh.202002044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
The effect of climate warming on microbial loop function in peat pools and Sphagnum hollows: Mesocosm experiments
Climate change models predict a possible increase in air temperature of 2–8°C. This means that global warming will significantly affect the functioning of various types of hydrogenic ecosystems. However, the effect of the temperature increase on microbial loop function in small water bodies associated with peat ecosystems (peat pools and Sphagnum hollows) is still unknown. We used mesocosm experiments (control and treatments with a 2°C, 4°C and 8°C temperature increase) to determine the response of bacterioplankton, flagellates, testate amoebae and ciliates to simulated temperature changes, taking into account seasonal variation in the temperate climate zone. The simulated increase in climate warming increased the species richness of ciliates and the abundance of bacteria, flagellates and ciliates. In contrast, there was a decrease in the species number and abundance of testate amoebae, the top predators in peat ecosystems. The sensitivity of the various microbial groups to temperature was size-dependent; large-sized testate amoebae declined under warming. These shifts caused a decrease in the predator–prey mass ratio. An increase in the abundance of top predators promotes increased abundance of ciliates, and thus changes the architecture of the food web. At the same time, we observed the increase in phycoflora biomass thus can cancel the potential negative effects of warming on heterotrophic microbial activity. So, the potential effect of warming on the C budgets of peat pools and hollows is evident. A better understanding of what regulates microbial populations and activity in small reservoirs in peat bogs and unravelling of these fundamental mechanisms are particularly critical to more accurately predict how peat bogs will respond to climate disturbances.
期刊介绍:
As human populations grow across the planet, water security, biodiversity loss and the loss of aquatic ecosystem services take on ever increasing priority for policy makers. International Review of Hydrobiology brings together in one forum fundamental and problem-oriented research on the challenges facing marine and freshwater biology in an economically changing world. Interdisciplinary in nature, articles cover all aspects of aquatic ecosystems, ranging from headwater streams to the ocean and biodiversity studies to ecosystem functioning, modeling approaches including GIS and resource management, with special emphasis on the link between marine and freshwater environments. The editors expressly welcome research on baseline data. The knowledge-driven papers will interest researchers, while the problem-driven articles will be of particular interest to policy makers. The overarching aim of the journal is to translate science into policy, allowing us to understand global systems yet act on a regional scale.
International Review of Hydrobiology publishes original articles, reviews, short communications, and methods papers.