Christine Becker, Anna Rummel, Jannicke Gallinger, J. Gross, A. Reineke
{"title":"交配仍然中断:在不久的将来,未来二氧化碳浓度的升高可能不会干扰葡萄Lobesia botrana和Eupoecilia ambiguella在葡萄园的交配中断","authors":"Christine Becker, Anna Rummel, Jannicke Gallinger, J. Gross, A. Reineke","doi":"10.20870/oeno-one.2023.57.1.7276","DOIUrl":null,"url":null,"abstract":"The successful, area-wide application of the mating disruption (MD) technique, an insect sex pheromone-based biotechnological pest control method, against the European grapevine moth Lobesia botrana and the European grape berry moth Eupoecilia ambiguella, has led to drastic reductions in insecticide application in vineyards. However, since insect pheromone perception and emission can be affected by abiotic conditions, the future success of MD may be affected by climate change. At the same time, politics and society are calling for drastic and sustainable reductions in pesticide application, making highly specific, efficient, and environmentally friendly pest control techniques like MD more important than ever. To anticipate whether climate change factors will interfere with the MD of L. botrana and E. ambiguella in vineyards, we conducted field experiments in the Geisenheim VineyardFACE (Free-Air Carbon dioxide Enrichment) facility. The insects were raised at ambient or elevated temperatures in the lab and male moths were released in cages installed in the VineyardFACE facility. Trap recapture rates obtained by pheromone lures or female moths under elevated or ambient CO2 in areas with and without MD were evaluated. Our results did not indicate a reduced efficacy ofL. botrana or E. ambiguella MD at elevated CO2 concentrations, irrespective of the temperature the moths were raised under. From a practical point of view—and especially from an ecological one—our results are good news. They indicate that MD will not be negatively affected by future elevated CO2 concentrations.","PeriodicalId":19510,"journal":{"name":"OENO One","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mating still disrupted: Future elevated CO2 concentrations are likely to not interfere with Lobesia botrana and Eupoecilia ambiguella mating disruption in vineyards in the near future\",\"authors\":\"Christine Becker, Anna Rummel, Jannicke Gallinger, J. Gross, A. Reineke\",\"doi\":\"10.20870/oeno-one.2023.57.1.7276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The successful, area-wide application of the mating disruption (MD) technique, an insect sex pheromone-based biotechnological pest control method, against the European grapevine moth Lobesia botrana and the European grape berry moth Eupoecilia ambiguella, has led to drastic reductions in insecticide application in vineyards. However, since insect pheromone perception and emission can be affected by abiotic conditions, the future success of MD may be affected by climate change. At the same time, politics and society are calling for drastic and sustainable reductions in pesticide application, making highly specific, efficient, and environmentally friendly pest control techniques like MD more important than ever. To anticipate whether climate change factors will interfere with the MD of L. botrana and E. ambiguella in vineyards, we conducted field experiments in the Geisenheim VineyardFACE (Free-Air Carbon dioxide Enrichment) facility. The insects were raised at ambient or elevated temperatures in the lab and male moths were released in cages installed in the VineyardFACE facility. Trap recapture rates obtained by pheromone lures or female moths under elevated or ambient CO2 in areas with and without MD were evaluated. Our results did not indicate a reduced efficacy ofL. botrana or E. ambiguella MD at elevated CO2 concentrations, irrespective of the temperature the moths were raised under. From a practical point of view—and especially from an ecological one—our results are good news. They indicate that MD will not be negatively affected by future elevated CO2 concentrations.\",\"PeriodicalId\":19510,\"journal\":{\"name\":\"OENO One\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OENO One\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.20870/oeno-one.2023.57.1.7276\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OENO One","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.20870/oeno-one.2023.57.1.7276","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Mating still disrupted: Future elevated CO2 concentrations are likely to not interfere with Lobesia botrana and Eupoecilia ambiguella mating disruption in vineyards in the near future
The successful, area-wide application of the mating disruption (MD) technique, an insect sex pheromone-based biotechnological pest control method, against the European grapevine moth Lobesia botrana and the European grape berry moth Eupoecilia ambiguella, has led to drastic reductions in insecticide application in vineyards. However, since insect pheromone perception and emission can be affected by abiotic conditions, the future success of MD may be affected by climate change. At the same time, politics and society are calling for drastic and sustainable reductions in pesticide application, making highly specific, efficient, and environmentally friendly pest control techniques like MD more important than ever. To anticipate whether climate change factors will interfere with the MD of L. botrana and E. ambiguella in vineyards, we conducted field experiments in the Geisenheim VineyardFACE (Free-Air Carbon dioxide Enrichment) facility. The insects were raised at ambient or elevated temperatures in the lab and male moths were released in cages installed in the VineyardFACE facility. Trap recapture rates obtained by pheromone lures or female moths under elevated or ambient CO2 in areas with and without MD were evaluated. Our results did not indicate a reduced efficacy ofL. botrana or E. ambiguella MD at elevated CO2 concentrations, irrespective of the temperature the moths were raised under. From a practical point of view—and especially from an ecological one—our results are good news. They indicate that MD will not be negatively affected by future elevated CO2 concentrations.
OENO OneAgricultural and Biological Sciences-Food Science
CiteScore
4.40
自引率
13.80%
发文量
85
审稿时长
13 weeks
期刊介绍:
OENO One is a peer-reviewed journal that publishes original research, reviews, mini-reviews, short communications, perspectives and spotlights in the areas of viticulture, grapevine physiology, genomics and genetics, oenology, winemaking technology and processes, wine chemistry and quality, analytical chemistry, microbiology, sensory and consumer sciences, safety and health. OENO One belongs to the International Viticulture and Enology Society - IVES, an academic association dedicated to viticulture and enology.