Qunlong Long, Jimeng Gao, Qingwen Han, Lei Wang, Yong He, Yefei Mao
{"title":"341 W连续波双端泵浦Tm:YAP平板激光器","authors":"Qunlong Long, Jimeng Gao, Qingwen Han, Lei Wang, Yong He, Yefei Mao","doi":"10.1007/s10946-023-10138-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we demonstrate a high-power continuous-wave (CW) Tm:YAP slab laser that is endpumped by laser diodes in a dual-end-pumped configuration. The laser delivers an output power of up to 341.6Wat 1.99 μm, corresponding to a slope efficiency of 49.4% and an optical-to-optical conversion efficiency of 41.6% with respect to the total incident pump power of 822 W. To our knowledge, this is the highest output power of a Tm:YAP laser. At an output power of 300 W, the beam quality factors M<sup>2</sup> are measured to be 260 in the <i>x</i> direction and 4 in the <i>y</i> direction, respectively. In addition, the power instability at the highest output power is measured to be 0.73% for 30 min. Also, we theoretically analyze the temperature distribution within the Tm:YAP slab crystal by the simulation software COMSOL 5.0.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"341 W Continuous-Wave Dual-End-Pumped Tm:YAP Slab Laser\",\"authors\":\"Qunlong Long, Jimeng Gao, Qingwen Han, Lei Wang, Yong He, Yefei Mao\",\"doi\":\"10.1007/s10946-023-10138-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we demonstrate a high-power continuous-wave (CW) Tm:YAP slab laser that is endpumped by laser diodes in a dual-end-pumped configuration. The laser delivers an output power of up to 341.6Wat 1.99 μm, corresponding to a slope efficiency of 49.4% and an optical-to-optical conversion efficiency of 41.6% with respect to the total incident pump power of 822 W. To our knowledge, this is the highest output power of a Tm:YAP laser. At an output power of 300 W, the beam quality factors M<sup>2</sup> are measured to be 260 in the <i>x</i> direction and 4 in the <i>y</i> direction, respectively. In addition, the power instability at the highest output power is measured to be 0.73% for 30 min. Also, we theoretically analyze the temperature distribution within the Tm:YAP slab crystal by the simulation software COMSOL 5.0.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-023-10138-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10138-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
341 W Continuous-Wave Dual-End-Pumped Tm:YAP Slab Laser
In this study, we demonstrate a high-power continuous-wave (CW) Tm:YAP slab laser that is endpumped by laser diodes in a dual-end-pumped configuration. The laser delivers an output power of up to 341.6Wat 1.99 μm, corresponding to a slope efficiency of 49.4% and an optical-to-optical conversion efficiency of 41.6% with respect to the total incident pump power of 822 W. To our knowledge, this is the highest output power of a Tm:YAP laser. At an output power of 300 W, the beam quality factors M2 are measured to be 260 in the x direction and 4 in the y direction, respectively. In addition, the power instability at the highest output power is measured to be 0.73% for 30 min. Also, we theoretically analyze the temperature distribution within the Tm:YAP slab crystal by the simulation software COMSOL 5.0.