{"title":"基于生物质气化的SOFC/GT热电联产系统的传统和先进的火用和火用经济性分析","authors":"Reza Najar, A. Kazemi, M. Borji, M. Nikian","doi":"10.1063/5.0159977","DOIUrl":null,"url":null,"abstract":"In this paper, a small scale biomass gasification based solid oxide fuel cell/gas turbine (SOFC/GT) combined heat and power (CHP) plant is investigated by means of both conventional and advanced exergy and exergoeconomic analysis. A one-dimensional model of an internal reforming planner SOFC is employed to account for the temperature gradient within the fuel cell solid structure, which is maintained at the maximum allowable temperature gradient (150 K) under different operating conditions. Two main parameters of the gasification process, namely, air-to-steam ratio and modified equivalence ratio, are investigated, and the key parameters of the cycle exergy and exergoeconomic study are analyzed. Moreover, a multi-objective optimization procedure is applied to determine the unavoidable gasifier conditions required for the advanced exergy analysis of the system. The results of the conventional exergy and exergoeconomic analysis reveal that the highest rate of exergy destruction occurs in the gasifier, followed by the afterburner (AB) with 41.87% and 21.98%, respectively. Also, the lowest exergoeconomic factor is related to AB by 5.34%, followed by heat recovery steam generator (HRSG), gasifier, air compressor, and SOFC, which implies that the priority is to improve these components to reduce the exergy destruction cost rate. The results obtained from the advanced exergy and exergoeconomic analysis indicate that the most of the total exergy destruction rate is unavoidably in the CHP plant. The AB shows the least improvement potential in terms of reduction of the exergy destruction by almost 2% avoidable part, followed by Heat Exchanger 3 (H.X.3), gasifier, and SOFC duo to their lowest avoidable exergy destruction parts of almost 5%, 10% and 13%f respectively. Furthermore, the unavoidable part of the investment cost rate for all the components of the cogeneration plant is larger than the avoidable part, which means that it is difficult to reduce the investment cost rate of the system components. Meanwhile, the endogenous/exogenous analysis shows that the exergy destruction is completely endogenous for all components of the integrated plant, except for HRSG, GT, and HX1. Compressors and turbines have the highest potential to reduce endogenous exergy destruction. This is due to their higher avoidable endogenous exergy destruction. Reducing the investment cost rate seems difficult, as the main investment cost rate was found to be an unavoidable endogenous part for all system components. Finally, some results obtained from the advanced analysis approach are the opposite to those of the conventional method. This fact emphasizes that the results of conventional exergy analysis alone are insufficient and unreliable. For example, based on the advanced analysis perspective, the gas turbine and H.X.2 by 8.9% and 8.46% modified exergoeconomic factor, respectively, should be considered for reducing investment cost rate, while the conventional method gives opposite results.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conventional and advanced exergy and exergoeconomic analysis of a biomass gasification based SOFC/GT cogeneration system\",\"authors\":\"Reza Najar, A. Kazemi, M. Borji, M. Nikian\",\"doi\":\"10.1063/5.0159977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a small scale biomass gasification based solid oxide fuel cell/gas turbine (SOFC/GT) combined heat and power (CHP) plant is investigated by means of both conventional and advanced exergy and exergoeconomic analysis. A one-dimensional model of an internal reforming planner SOFC is employed to account for the temperature gradient within the fuel cell solid structure, which is maintained at the maximum allowable temperature gradient (150 K) under different operating conditions. Two main parameters of the gasification process, namely, air-to-steam ratio and modified equivalence ratio, are investigated, and the key parameters of the cycle exergy and exergoeconomic study are analyzed. Moreover, a multi-objective optimization procedure is applied to determine the unavoidable gasifier conditions required for the advanced exergy analysis of the system. The results of the conventional exergy and exergoeconomic analysis reveal that the highest rate of exergy destruction occurs in the gasifier, followed by the afterburner (AB) with 41.87% and 21.98%, respectively. Also, the lowest exergoeconomic factor is related to AB by 5.34%, followed by heat recovery steam generator (HRSG), gasifier, air compressor, and SOFC, which implies that the priority is to improve these components to reduce the exergy destruction cost rate. The results obtained from the advanced exergy and exergoeconomic analysis indicate that the most of the total exergy destruction rate is unavoidably in the CHP plant. The AB shows the least improvement potential in terms of reduction of the exergy destruction by almost 2% avoidable part, followed by Heat Exchanger 3 (H.X.3), gasifier, and SOFC duo to their lowest avoidable exergy destruction parts of almost 5%, 10% and 13%f respectively. Furthermore, the unavoidable part of the investment cost rate for all the components of the cogeneration plant is larger than the avoidable part, which means that it is difficult to reduce the investment cost rate of the system components. Meanwhile, the endogenous/exogenous analysis shows that the exergy destruction is completely endogenous for all components of the integrated plant, except for HRSG, GT, and HX1. Compressors and turbines have the highest potential to reduce endogenous exergy destruction. This is due to their higher avoidable endogenous exergy destruction. Reducing the investment cost rate seems difficult, as the main investment cost rate was found to be an unavoidable endogenous part for all system components. Finally, some results obtained from the advanced analysis approach are the opposite to those of the conventional method. This fact emphasizes that the results of conventional exergy analysis alone are insufficient and unreliable. For example, based on the advanced analysis perspective, the gas turbine and H.X.2 by 8.9% and 8.46% modified exergoeconomic factor, respectively, should be considered for reducing investment cost rate, while the conventional method gives opposite results.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0159977\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0159977","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Conventional and advanced exergy and exergoeconomic analysis of a biomass gasification based SOFC/GT cogeneration system
In this paper, a small scale biomass gasification based solid oxide fuel cell/gas turbine (SOFC/GT) combined heat and power (CHP) plant is investigated by means of both conventional and advanced exergy and exergoeconomic analysis. A one-dimensional model of an internal reforming planner SOFC is employed to account for the temperature gradient within the fuel cell solid structure, which is maintained at the maximum allowable temperature gradient (150 K) under different operating conditions. Two main parameters of the gasification process, namely, air-to-steam ratio and modified equivalence ratio, are investigated, and the key parameters of the cycle exergy and exergoeconomic study are analyzed. Moreover, a multi-objective optimization procedure is applied to determine the unavoidable gasifier conditions required for the advanced exergy analysis of the system. The results of the conventional exergy and exergoeconomic analysis reveal that the highest rate of exergy destruction occurs in the gasifier, followed by the afterburner (AB) with 41.87% and 21.98%, respectively. Also, the lowest exergoeconomic factor is related to AB by 5.34%, followed by heat recovery steam generator (HRSG), gasifier, air compressor, and SOFC, which implies that the priority is to improve these components to reduce the exergy destruction cost rate. The results obtained from the advanced exergy and exergoeconomic analysis indicate that the most of the total exergy destruction rate is unavoidably in the CHP plant. The AB shows the least improvement potential in terms of reduction of the exergy destruction by almost 2% avoidable part, followed by Heat Exchanger 3 (H.X.3), gasifier, and SOFC duo to their lowest avoidable exergy destruction parts of almost 5%, 10% and 13%f respectively. Furthermore, the unavoidable part of the investment cost rate for all the components of the cogeneration plant is larger than the avoidable part, which means that it is difficult to reduce the investment cost rate of the system components. Meanwhile, the endogenous/exogenous analysis shows that the exergy destruction is completely endogenous for all components of the integrated plant, except for HRSG, GT, and HX1. Compressors and turbines have the highest potential to reduce endogenous exergy destruction. This is due to their higher avoidable endogenous exergy destruction. Reducing the investment cost rate seems difficult, as the main investment cost rate was found to be an unavoidable endogenous part for all system components. Finally, some results obtained from the advanced analysis approach are the opposite to those of the conventional method. This fact emphasizes that the results of conventional exergy analysis alone are insufficient and unreliable. For example, based on the advanced analysis perspective, the gas turbine and H.X.2 by 8.9% and 8.46% modified exergoeconomic factor, respectively, should be considered for reducing investment cost rate, while the conventional method gives opposite results.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy