{"title":"老式的参数模型仍然是最好的:几种波动状态下风险价值方法的比较","authors":"Mateusz Buczyński, M. Chlebus","doi":"10.21314/JRMV.2020.222","DOIUrl":null,"url":null,"abstract":"Numerous advances in the modelling techniques of Value-at-Risk (VaR) have provided the financial institutions with a wide scope of market risk approaches. Yet it remains unknown which of the models should be used depending on the state of volatility. In this article we present the backtesting results for 1% and 2.5% VaR of six indexes from emerging and developed countries using several most known VaR models, among many: GARCH, EVT, CAViaR and FHS with multiple sets of parameters. The backtesting procedure has been based on the excess ratio, Kupiec and Christoffersen tests for multiple thresholds and cost functions. The added value of this article is that we have compared the models in four different scenarios, with different states of volatility in training and testing samples. The results indicate that the best of the models that is the least affected by changes in the volatility is GARCH(1,1) with standardized student's t-distribution. Non-parmetric techniques (e.g. CAViaR with GARCH setup (see Engle and Manganelli, 2001) or FHS with skewed normal distribution) have very prominent results in testing periods with low volatility, but are relatively worse in the turbulent periods. We have also discussed an automatic method to setting a threshold of extreme distribution for EVT models, as well as several ensembling methods for VaR, among which minimum of best models has been proven to have very good results - in particular a minimum of GARCH(1,1) with standardized student's t-distribution and either EVT or CAViaR models.","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Old-Fashioned Parametric Models are Still the Best: A Comparison of Value-at-Risk Approaches in Several Volatility States\",\"authors\":\"Mateusz Buczyński, M. Chlebus\",\"doi\":\"10.21314/JRMV.2020.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous advances in the modelling techniques of Value-at-Risk (VaR) have provided the financial institutions with a wide scope of market risk approaches. Yet it remains unknown which of the models should be used depending on the state of volatility. In this article we present the backtesting results for 1% and 2.5% VaR of six indexes from emerging and developed countries using several most known VaR models, among many: GARCH, EVT, CAViaR and FHS with multiple sets of parameters. The backtesting procedure has been based on the excess ratio, Kupiec and Christoffersen tests for multiple thresholds and cost functions. The added value of this article is that we have compared the models in four different scenarios, with different states of volatility in training and testing samples. The results indicate that the best of the models that is the least affected by changes in the volatility is GARCH(1,1) with standardized student's t-distribution. Non-parmetric techniques (e.g. CAViaR with GARCH setup (see Engle and Manganelli, 2001) or FHS with skewed normal distribution) have very prominent results in testing periods with low volatility, but are relatively worse in the turbulent periods. We have also discussed an automatic method to setting a threshold of extreme distribution for EVT models, as well as several ensembling methods for VaR, among which minimum of best models has been proven to have very good results - in particular a minimum of GARCH(1,1) with standardized student's t-distribution and either EVT or CAViaR models.\",\"PeriodicalId\":43447,\"journal\":{\"name\":\"Journal of Risk Model Validation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Risk Model Validation\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/JRMV.2020.222\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Model Validation","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JRMV.2020.222","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Old-Fashioned Parametric Models are Still the Best: A Comparison of Value-at-Risk Approaches in Several Volatility States
Numerous advances in the modelling techniques of Value-at-Risk (VaR) have provided the financial institutions with a wide scope of market risk approaches. Yet it remains unknown which of the models should be used depending on the state of volatility. In this article we present the backtesting results for 1% and 2.5% VaR of six indexes from emerging and developed countries using several most known VaR models, among many: GARCH, EVT, CAViaR and FHS with multiple sets of parameters. The backtesting procedure has been based on the excess ratio, Kupiec and Christoffersen tests for multiple thresholds and cost functions. The added value of this article is that we have compared the models in four different scenarios, with different states of volatility in training and testing samples. The results indicate that the best of the models that is the least affected by changes in the volatility is GARCH(1,1) with standardized student's t-distribution. Non-parmetric techniques (e.g. CAViaR with GARCH setup (see Engle and Manganelli, 2001) or FHS with skewed normal distribution) have very prominent results in testing periods with low volatility, but are relatively worse in the turbulent periods. We have also discussed an automatic method to setting a threshold of extreme distribution for EVT models, as well as several ensembling methods for VaR, among which minimum of best models has been proven to have very good results - in particular a minimum of GARCH(1,1) with standardized student's t-distribution and either EVT or CAViaR models.
期刊介绍:
As monetary institutions rely greatly on economic and financial models for a wide array of applications, model validation has become progressively inventive within the field of risk. The Journal of Risk Model Validation focuses on the implementation and validation of risk models, and aims to provide a greater understanding of key issues including the empirical evaluation of existing models, pitfalls in model validation and the development of new methods. We also publish papers on back-testing. Our main field of application is in credit risk modelling but we are happy to consider any issues of risk model validation for any financial asset class. The Journal of Risk Model Validation considers submissions in the form of research papers on topics including, but not limited to: Empirical model evaluation studies Backtesting studies Stress-testing studies New methods of model validation/backtesting/stress-testing Best practices in model development, deployment, production and maintenance Pitfalls in model validation techniques (all types of risk, forecasting, pricing and rating)