二变量生存数据的广义Lindley共享加性脆弱性回归模型

Q4 Mathematics Statistics in Transition Pub Date : 2022-12-01 DOI:10.2478/stattrans-2022-0048
Arvind Pandey, David D. Hanagal, Shikha Tyagi
{"title":"二变量生存数据的广义Lindley共享加性脆弱性回归模型","authors":"Arvind Pandey, David D. Hanagal, Shikha Tyagi","doi":"10.2478/stattrans-2022-0048","DOIUrl":null,"url":null,"abstract":"Abstract Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalised Lindley shared additive frailty regression model for bivariate survival data\",\"authors\":\"Arvind Pandey, David D. Hanagal, Shikha Tyagi\",\"doi\":\"10.2478/stattrans-2022-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/stattrans-2022-0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要脆弱模型是解决个体疾病和死亡风险中未观察到的异质性问题的可能选择。基于早期的研究,共享虚弱模型可用于分析与生存时间相关的双变量数据(例如配对实验、双胞胎或家庭数据)。在这篇文章中,我们假设虚弱是危险率的附加因素。基于广义Lindley分布建立了一类新的共享脆弱性模型。通过假设广义威布尔和广义对数逻辑基线分布,我们提出了一类新的基于加性风险率的共享脆弱性模型。我们估计了这些脆弱性模型中的参数,并使用马尔可夫链蒙特卡罗(MCMC)技术的贝叶斯范式。模型选择标准已应用于模型的比较。我们分析了肾脏感染数据,并提出了最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalised Lindley shared additive frailty regression model for bivariate survival data
Abstract Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Transition
Statistics in Transition Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.
期刊最新文献
Estimating the probability of leaving unemployment for older people in Poland using survival models with censored data Does economic freedom promote financial development? Evidence from EU countries Rotation schemes and Chebyshev polynomials A nonparametric analysis of discrete time competing risks data: a comparison of the cause-specific-hazards approach and the vertical approach Comments on „Probability vs. Nonprobability Sampling: From the Birth of Survey Sampling to the Present Day” by Graham Kalton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1