{"title":"二变量生存数据的广义Lindley共享加性脆弱性回归模型","authors":"Arvind Pandey, David D. Hanagal, Shikha Tyagi","doi":"10.2478/stattrans-2022-0048","DOIUrl":null,"url":null,"abstract":"Abstract Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalised Lindley shared additive frailty regression model for bivariate survival data\",\"authors\":\"Arvind Pandey, David D. Hanagal, Shikha Tyagi\",\"doi\":\"10.2478/stattrans-2022-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/stattrans-2022-0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Generalised Lindley shared additive frailty regression model for bivariate survival data
Abstract Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.