恒磁场作用下Fe3O4-Cu/water杂化纳米流体传热性能的神经网络预测

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-05-22 DOI:10.18186/thermal.1300854
Edip Taşkesen, Mahmut Dirik, Mutlu Tekir, Hayati Kadir Pazarlıoğlu
{"title":"恒磁场作用下Fe3O4-Cu/water杂化纳米流体传热性能的神经网络预测","authors":"Edip Taşkesen, Mahmut Dirik, Mutlu Tekir, Hayati Kadir Pazarlıoğlu","doi":"10.18186/thermal.1300854","DOIUrl":null,"url":null,"abstract":"In this study, the experimental results using mono (Fe3O4/water and Cu/water) and hybrid (Fe3O4-Cu/water) type nanofluid with nanoparticle volume concentrations of (0≤φ≤0.02) under laminar flow conditions (994≤Re≤2337) were compared with the results obtained by ANN. While the Reynolds number (Re), hydraulic diameter (Dh), thermal conductivity (k) of working fluid, and volume concentration of the nanoparticles (φ) were selected as input layers, the Nusselt number (Nu) were considered as output layers. The %75 of the findings obtained from experiments were used to train Artificial Neural Network (ANN). The estimated data by ANN is in perfect agreement with the experimental data. The success of ANN was deter-mined by comparing it with SVM, Dec Tree, and their variations. Mean square error (MSE), root mean square error (RMSE), R-sq (R2), and mean absolute error (MEA) were considered in evaluating the results obtained. According to findings, MAE 0.00088274, MSE 1.4106e-06, RMSE 0.0011877 and R2 1.00 were measured. These findings show that the use of ANN is a feasible way to predict the convective heat transfer performance of hybrid nanofluid under a magnetic field (MF).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting heat transfer performance of Fe3O4-Cu/water hybrid nanofluid under constant magnetic field using ANN\",\"authors\":\"Edip Taşkesen, Mahmut Dirik, Mutlu Tekir, Hayati Kadir Pazarlıoğlu\",\"doi\":\"10.18186/thermal.1300854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the experimental results using mono (Fe3O4/water and Cu/water) and hybrid (Fe3O4-Cu/water) type nanofluid with nanoparticle volume concentrations of (0≤φ≤0.02) under laminar flow conditions (994≤Re≤2337) were compared with the results obtained by ANN. While the Reynolds number (Re), hydraulic diameter (Dh), thermal conductivity (k) of working fluid, and volume concentration of the nanoparticles (φ) were selected as input layers, the Nusselt number (Nu) were considered as output layers. The %75 of the findings obtained from experiments were used to train Artificial Neural Network (ANN). The estimated data by ANN is in perfect agreement with the experimental data. The success of ANN was deter-mined by comparing it with SVM, Dec Tree, and their variations. Mean square error (MSE), root mean square error (RMSE), R-sq (R2), and mean absolute error (MEA) were considered in evaluating the results obtained. According to findings, MAE 0.00088274, MSE 1.4106e-06, RMSE 0.0011877 and R2 1.00 were measured. These findings show that the use of ANN is a feasible way to predict the convective heat transfer performance of hybrid nanofluid under a magnetic field (MF).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1300854\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1300854","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,将在层流条件下(994≤Re≤2337)使用纳米颗粒体积浓度为(0≤φ≤0.02)的单(Fe3O4/water和Cu/water)和混合(Fe3O_4-Cu/water)型纳米流体的实验结果与人工神经网络的结果进行了比较,选择纳米颗粒的体积浓度(φ)作为输入层,努塞尔数(Nu)作为输出层。从实验中获得的75%的结果用于训练人工神经网络(ANN)。人工神经网络的估计数据与实验数据完全一致。通过与SVM、Dec-Tree及其变体的比较,确定了人工神经网络的成功。在评估所获得的结果时,考虑了均方误差(MSE)、均方根误差(RMSE)、R-sq(R2)和平均绝对误差(MEA)。根据研究结果,测量的MAE为0.00088274,MSE为1.4106e-06,RMSE为0.0011877,R2为1.00。这些发现表明,使用人工神经网络预测混合纳米流体在磁场(MF)下的对流传热性能是一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting heat transfer performance of Fe3O4-Cu/water hybrid nanofluid under constant magnetic field using ANN
In this study, the experimental results using mono (Fe3O4/water and Cu/water) and hybrid (Fe3O4-Cu/water) type nanofluid with nanoparticle volume concentrations of (0≤φ≤0.02) under laminar flow conditions (994≤Re≤2337) were compared with the results obtained by ANN. While the Reynolds number (Re), hydraulic diameter (Dh), thermal conductivity (k) of working fluid, and volume concentration of the nanoparticles (φ) were selected as input layers, the Nusselt number (Nu) were considered as output layers. The %75 of the findings obtained from experiments were used to train Artificial Neural Network (ANN). The estimated data by ANN is in perfect agreement with the experimental data. The success of ANN was deter-mined by comparing it with SVM, Dec Tree, and their variations. Mean square error (MSE), root mean square error (RMSE), R-sq (R2), and mean absolute error (MEA) were considered in evaluating the results obtained. According to findings, MAE 0.00088274, MSE 1.4106e-06, RMSE 0.0011877 and R2 1.00 were measured. These findings show that the use of ANN is a feasible way to predict the convective heat transfer performance of hybrid nanofluid under a magnetic field (MF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation. Heterogeneity of provider preferences for HIV Care Coordination Program features: latent class analysis of a discrete choice experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1