海口某高层建筑台风非平稳响应分析

IF 4.3 3区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Engineering and Management Pub Date : 2023-03-13 DOI:10.3846/jcem.2023.18675
Jiaxing Hu, Zhengnong Li, Zhefei Zhao
{"title":"海口某高层建筑台风非平稳响应分析","authors":"Jiaxing Hu, Zhengnong Li, Zhefei Zhao","doi":"10.3846/jcem.2023.18675","DOIUrl":null,"url":null,"abstract":"From 2014 to 2016, several wind resistant field measurements were conducted to the high-rise building in Haikou. Based on these measurements, the present paper disclosed the characteristics of the time-history responses of axial acceleration on different floors during four typhoons, including the Rammasun, Kalmaegi, Mujigae and Sarika typhoons. The modal parameters of the measured building were identified by Morlet time-frequency wavelet transform methods, and the amplitude-dependent modal damping ratios and frequencies along translational directions were investigated. The results show that the variation trend of modal frequency with acceleration amplitude identified by the Morlet wavelet is the same as that recognized by time-domain method, while it is scattered with the interval bar (min-average-max) due to the nonstationary response of typhoon. Meanwhile, the larger the amplitude of acceleration response of high-rise buildings under strong wind, the greater the time-varying fluctuation of modal parameters identified by wavelet transform, and the bigger the difference between the interval bar (min-average-max). The full-scale study is expected to provide useful information on the wind-resistant design of high-rise buildings in typhoon-prone regions.","PeriodicalId":15524,"journal":{"name":"Journal of Civil Engineering and Management","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NON-STATIONARY RESPONSE ANALYSIS OF A HIGH-RISE BUILDING IN HAIKOU DURING TYPHOONS\",\"authors\":\"Jiaxing Hu, Zhengnong Li, Zhefei Zhao\",\"doi\":\"10.3846/jcem.2023.18675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From 2014 to 2016, several wind resistant field measurements were conducted to the high-rise building in Haikou. Based on these measurements, the present paper disclosed the characteristics of the time-history responses of axial acceleration on different floors during four typhoons, including the Rammasun, Kalmaegi, Mujigae and Sarika typhoons. The modal parameters of the measured building were identified by Morlet time-frequency wavelet transform methods, and the amplitude-dependent modal damping ratios and frequencies along translational directions were investigated. The results show that the variation trend of modal frequency with acceleration amplitude identified by the Morlet wavelet is the same as that recognized by time-domain method, while it is scattered with the interval bar (min-average-max) due to the nonstationary response of typhoon. Meanwhile, the larger the amplitude of acceleration response of high-rise buildings under strong wind, the greater the time-varying fluctuation of modal parameters identified by wavelet transform, and the bigger the difference between the interval bar (min-average-max). The full-scale study is expected to provide useful information on the wind-resistant design of high-rise buildings in typhoon-prone regions.\",\"PeriodicalId\":15524,\"journal\":{\"name\":\"Journal of Civil Engineering and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Civil Engineering and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3846/jcem.2023.18675\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Engineering and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/jcem.2023.18675","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

2014年至2016年,对海口某高层建筑进行了多次风场测试。基于这些测量结果,本文揭示了Rammasun、Kalmaegi、Mujigae和Sarika四个台风不同楼层轴向加速度的时程响应特征。采用Morlet时频小波变换方法对被测建筑物的模态参数进行识别,并研究了平移方向上与振幅相关的模态阻尼比和频率。结果表明,Morlet小波识别出的模态频率随加速度幅值的变化趋势与时域方法识别出的变化趋势相同,但由于台风的非平稳响应,模态频率随时间间隔条(最小-平均-最大)而分散。同时,高层建筑在强风下的加速度响应幅度越大,小波变换识别的模态参数的时变波动越大,间隔条(最小-平均-最大)之间的差异也越大。这项全面的研究有望为台风多发地区高层建筑的抗风设计提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NON-STATIONARY RESPONSE ANALYSIS OF A HIGH-RISE BUILDING IN HAIKOU DURING TYPHOONS
From 2014 to 2016, several wind resistant field measurements were conducted to the high-rise building in Haikou. Based on these measurements, the present paper disclosed the characteristics of the time-history responses of axial acceleration on different floors during four typhoons, including the Rammasun, Kalmaegi, Mujigae and Sarika typhoons. The modal parameters of the measured building were identified by Morlet time-frequency wavelet transform methods, and the amplitude-dependent modal damping ratios and frequencies along translational directions were investigated. The results show that the variation trend of modal frequency with acceleration amplitude identified by the Morlet wavelet is the same as that recognized by time-domain method, while it is scattered with the interval bar (min-average-max) due to the nonstationary response of typhoon. Meanwhile, the larger the amplitude of acceleration response of high-rise buildings under strong wind, the greater the time-varying fluctuation of modal parameters identified by wavelet transform, and the bigger the difference between the interval bar (min-average-max). The full-scale study is expected to provide useful information on the wind-resistant design of high-rise buildings in typhoon-prone regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
4.70%
发文量
0
审稿时长
1.7 months
期刊介绍: The Journal of Civil Engineering and Management is a peer-reviewed journal that provides an international forum for the dissemination of the latest original research, achievements and developments. We publish for researchers, designers, users and manufacturers in the different fields of civil engineering and management. The journal publishes original articles that present new information and reviews. Our objective is to provide essential information and new ideas to help improve civil engineering competency, efficiency and productivity in world markets. The Journal of Civil Engineering and Management publishes articles in the following fields: building materials and structures, structural mechanics and physics, geotechnical engineering, road and bridge engineering, urban engineering and economy, constructions technology, economy and management, information technologies in construction, fire protection, thermoinsulation and renovation of buildings, labour safety in construction.
期刊最新文献
INTEGRATING ENHANCED OPTIMIZATION WITH FINITE ELEMENT ANALYSIS FOR DESIGNING STEEL STRUCTURE WEIGHT UNDER MULTIPLE CONSTRAINTS RANDOM FIELD-BASED TUNNELING INFORMATION MODELING FRAMEWORK FOR PROBABILISTIC SAFETY ASSESSMENT OF SHIELD TUNNELS SHM-BASED PRACTICAL SAFETY EVALUATION AND VIBRATION CONTROL MODEL FOR STEEL PIPES STUDY OF THE INFLUENCE OF METRO LOADS ON THE DESTRUCTION OF NEARBY BUILDINGS AND CONSTRUCTION STRUCTURES USING BIM TECHNOLOGIES PERFORMANCE EVALUATION OF PALM OIL CLINKER AS CEMENT AND SAND REPLACEMENT MATERIALS IN FOAMED CONCRETE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1