用涡流法检测氢对碳合金板力学性能的影响

IF 3 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Nondestructive Testing and Evaluation Pub Date : 2023-04-02 DOI:10.1080/10589759.2023.2195647
Haiting Zhou, Huandong Huang, Dongdong Ye, Qiang Wang, Chenxi Zhu
{"title":"用涡流法检测氢对碳合金板力学性能的影响","authors":"Haiting Zhou, Huandong Huang, Dongdong Ye, Qiang Wang, Chenxi Zhu","doi":"10.1080/10589759.2023.2195647","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hydrogen diffuses in the material and accumulates in dislocations, holes, etc. which will lead to deterioration of the mechanical properties of the material and affect the health state of the structural parts of hydrogen service. In this paper, a characterisation method for the degradation degree of hydrogen-induced properties of materials based on eddy current response signal is proposed. Based on the semi-infinite planar source diffusion model and hydrogen permeation model, an improved hydrogen diffusion and distribution analysis model was established, and an early hydrogen damage eddy current detection model for multilayer conductive structure materials was constructed. The evolution of material properties under the action of hydrogen was analysed, and a linear relationship between hydrogen content and conductivity was obtained. The loss of elongation was selected as the damage index and the relationship between the eddy current response signal and hydrogen embrittlement performance index is established. Experiments verify that the eddy current response signal is sensitive to the performance index and increases with the intensification of hydrogen-induced performance degradation.","PeriodicalId":49746,"journal":{"name":"Nondestructive Testing and Evaluation","volume":"38 1","pages":"683 - 699"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of hydrogen on mechanical performance of carbon alloy plates detected by eddy current method\",\"authors\":\"Haiting Zhou, Huandong Huang, Dongdong Ye, Qiang Wang, Chenxi Zhu\",\"doi\":\"10.1080/10589759.2023.2195647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Hydrogen diffuses in the material and accumulates in dislocations, holes, etc. which will lead to deterioration of the mechanical properties of the material and affect the health state of the structural parts of hydrogen service. In this paper, a characterisation method for the degradation degree of hydrogen-induced properties of materials based on eddy current response signal is proposed. Based on the semi-infinite planar source diffusion model and hydrogen permeation model, an improved hydrogen diffusion and distribution analysis model was established, and an early hydrogen damage eddy current detection model for multilayer conductive structure materials was constructed. The evolution of material properties under the action of hydrogen was analysed, and a linear relationship between hydrogen content and conductivity was obtained. The loss of elongation was selected as the damage index and the relationship between the eddy current response signal and hydrogen embrittlement performance index is established. Experiments verify that the eddy current response signal is sensitive to the performance index and increases with the intensification of hydrogen-induced performance degradation.\",\"PeriodicalId\":49746,\"journal\":{\"name\":\"Nondestructive Testing and Evaluation\",\"volume\":\"38 1\",\"pages\":\"683 - 699\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nondestructive Testing and Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10589759.2023.2195647\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nondestructive Testing and Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10589759.2023.2195647","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

氢在材料中扩散并积聚在位错、孔洞等处,会导致材料力学性能的恶化,影响加氢服役结构件的健康状态。本文提出了一种基于涡流响应信号的材料氢致性能降解程度表征方法。基于半无限平面源扩散模型和氢渗透模型,建立了改进的氢扩散分布分析模型,构建了多层导电结构材料早期氢损伤涡流检测模型。分析了氢作用下材料性能的演变,得到了氢含量与电导率之间的线性关系。选择伸长率损失作为损伤指标,建立了涡流响应信号与氢脆性能指标之间的关系。实验验证了涡流响应信号对性能指标的敏感性,并随着氢致性能退化的加剧而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of hydrogen on mechanical performance of carbon alloy plates detected by eddy current method
ABSTRACT Hydrogen diffuses in the material and accumulates in dislocations, holes, etc. which will lead to deterioration of the mechanical properties of the material and affect the health state of the structural parts of hydrogen service. In this paper, a characterisation method for the degradation degree of hydrogen-induced properties of materials based on eddy current response signal is proposed. Based on the semi-infinite planar source diffusion model and hydrogen permeation model, an improved hydrogen diffusion and distribution analysis model was established, and an early hydrogen damage eddy current detection model for multilayer conductive structure materials was constructed. The evolution of material properties under the action of hydrogen was analysed, and a linear relationship between hydrogen content and conductivity was obtained. The loss of elongation was selected as the damage index and the relationship between the eddy current response signal and hydrogen embrittlement performance index is established. Experiments verify that the eddy current response signal is sensitive to the performance index and increases with the intensification of hydrogen-induced performance degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nondestructive Testing and Evaluation
Nondestructive Testing and Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.30
自引率
11.50%
发文量
57
审稿时长
4 months
期刊介绍: Nondestructive Testing and Evaluation publishes the results of research and development in the underlying theory, novel techniques and applications of nondestructive testing and evaluation in the form of letters, original papers and review articles. Articles concerning both the investigation of physical processes and the development of mechanical processes and techniques are welcomed. Studies of conventional techniques, including radiography, ultrasound, eddy currents, magnetic properties and magnetic particle inspection, thermal imaging and dye penetrant, will be considered in addition to more advanced approaches using, for example, lasers, squid magnetometers, interferometers, synchrotron and neutron beams and Compton scattering. Work on the development of conventional and novel transducers is particularly welcomed. In addition, articles are invited on general aspects of nondestructive testing and evaluation in education, training, validation and links with engineering.
期刊最新文献
Application of light-weighted CNN for diagnosis of internal concrete defects using hammering sound Material model of thermally modified resonance spruce ( Picea abies Karst.) for linear damped modal analysis Cut-off frequency analysis of SH-like guided waves in the three-dimensional component with variable width Generalized Gini indices–enhanced sparsity decomposition for rotating machinery health assessment using a rotary encoder Nondestructive testing of internal defects by ring-laser-excited ultrasonic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1