并行性的选择:多gpu驱动的管道用于庞大的学术骨干网络

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Parallel Emergent and Distributed Systems Pub Date : 2021-06-24 DOI:10.1080/17445760.2021.1941009
R. Ando, Y. Kadobayashi, H. Takakura
{"title":"并行性的选择:多gpu驱动的管道用于庞大的学术骨干网络","authors":"R. Ando, Y. Kadobayashi, H. Takakura","doi":"10.1080/17445760.2021.1941009","DOIUrl":null,"url":null,"abstract":"Science Information Network (SINET) is a Japanese academic backbone network for more than 800 research institutions and universities. In this paper, we present a multi-GPU-driven pipeline for handling huge session data of SINET. Our pipeline consists of ELK stack, multi-GPU server, and Splunk. A multi-GPU server is responsible for two procedures: discrimination and histogramming. Discrimination is dividing session data into ingoing/outgoing with subnet mask calculation and network address matching. Histogramming is grouping ingoing/outgoing session data into bins with map-reduce. In our architecture, we use GPU for the acceleration of ingress/egress discrimination of session data. Also, we use a tiling design pattern for building a two-stage map-reduce of CPU and GPU. Our multi-GPU-driven pipeline has succeeded in processing huge workloads of about 1.2–1.6 billion session streams (500–650 GB) within 24 hours. GRAPHICAL ABSTRACT","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17445760.2021.1941009","citationCount":"2","resultStr":"{\"title\":\"Choice of parallelism: multi-GPU driven pipeline for huge academic backbone network\",\"authors\":\"R. Ando, Y. Kadobayashi, H. Takakura\",\"doi\":\"10.1080/17445760.2021.1941009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Science Information Network (SINET) is a Japanese academic backbone network for more than 800 research institutions and universities. In this paper, we present a multi-GPU-driven pipeline for handling huge session data of SINET. Our pipeline consists of ELK stack, multi-GPU server, and Splunk. A multi-GPU server is responsible for two procedures: discrimination and histogramming. Discrimination is dividing session data into ingoing/outgoing with subnet mask calculation and network address matching. Histogramming is grouping ingoing/outgoing session data into bins with map-reduce. In our architecture, we use GPU for the acceleration of ingress/egress discrimination of session data. Also, we use a tiling design pattern for building a two-stage map-reduce of CPU and GPU. Our multi-GPU-driven pipeline has succeeded in processing huge workloads of about 1.2–1.6 billion session streams (500–650 GB) within 24 hours. GRAPHICAL ABSTRACT\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17445760.2021.1941009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2021.1941009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2021.1941009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

科学信息网(SINET)是日本800多所研究机构和大学的学术骨干网络。在本文中,我们提出了一个多gpu驱动的管道来处理SINET的海量会话数据。我们的流水线由ELK堆栈、多gpu服务器和Splunk组成。一个多gpu服务器负责两个程序:判别和直方图。判别是通过子网掩码计算和网络地址匹配将会话数据划分为入/出。直方图是使用map-reduce将入/出会话数据分组到bin中。在我们的架构中,我们使用GPU来加速会话数据的入口/出口识别。此外,我们使用平铺设计模式来构建CPU和GPU的两阶段映射缩减。我们的多gpu驱动管道已经成功地在24小时内处理了大约12 - 16亿个会话流(500-650 GB)的巨大工作负载。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Choice of parallelism: multi-GPU driven pipeline for huge academic backbone network
Science Information Network (SINET) is a Japanese academic backbone network for more than 800 research institutions and universities. In this paper, we present a multi-GPU-driven pipeline for handling huge session data of SINET. Our pipeline consists of ELK stack, multi-GPU server, and Splunk. A multi-GPU server is responsible for two procedures: discrimination and histogramming. Discrimination is dividing session data into ingoing/outgoing with subnet mask calculation and network address matching. Histogramming is grouping ingoing/outgoing session data into bins with map-reduce. In our architecture, we use GPU for the acceleration of ingress/egress discrimination of session data. Also, we use a tiling design pattern for building a two-stage map-reduce of CPU and GPU. Our multi-GPU-driven pipeline has succeeded in processing huge workloads of about 1.2–1.6 billion session streams (500–650 GB) within 24 hours. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
期刊最新文献
Enhancing blockchain security through natural language processing and real-time monitoring Verification of cryptocurrency consensus protocols: reenterable colored Petri net model design Security and dependability analysis of blockchain systems in partially synchronous networks with Byzantine faults Fundamental data structures for matrix-free finite elements on hybrid tetrahedral grids Blocking aware offline survivable path provisioning of connection requests in elastic optical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1