优化建筑隔热:砖的几何形状和热系数对能源效率和舒适度的影响

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-07-05 DOI:10.3390/ceramics6030089
Ioannis Makrygiannis, K. Karalis
{"title":"优化建筑隔热:砖的几何形状和热系数对能源效率和舒适度的影响","authors":"Ioannis Makrygiannis, K. Karalis","doi":"10.3390/ceramics6030089","DOIUrl":null,"url":null,"abstract":"The thermal insulation properties of building walls are critical to the overall energy efficiency and comfort of a building. One important factor that can affect these properties is the type of bricks used in construction. Bricks can vary in their geometry and thermal coefficient, which can impact their ability to transfer heat through the wall. The geometry of a brick can affect its thermal properties by altering the amount of air trapped within it and the surface area available for heat transfer. Hollow bricks or those with complex geometries may have lower thermal conductivity than regular solid bricks due to the air pockets trapped within them. Conversely, larger surface areas on the exterior of the brick can increase heat transfer. The thermal coefficient of clay, a common material used in brick production, is another important factor. Clay has relatively low thermal conductivity, meaning it is a poor conductor of heat. However, the quality of the clay, as well as the firing temperature and duration used in brick production, can impact its thermal coefficient. Higher firing temperatures and longer firing times can result in a more compact and dense clay brick, which can improve its thermal properties. In summary, the thermal insulation properties of building walls can be significantly affected by the type of bricks used in their construction. It is important to consider the geometry and thermal coefficient of the bricks when designing a building to achieve the desired level of thermal insulation. By selecting bricks with appropriate properties, designers can help to improve the energy efficiency and comfort of the building while reducing its environmental impact.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Building Thermal Insulation: The Impact of Brick Geometry and Thermal Coefficient on Energy Efficiency and Comfort\",\"authors\":\"Ioannis Makrygiannis, K. Karalis\",\"doi\":\"10.3390/ceramics6030089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal insulation properties of building walls are critical to the overall energy efficiency and comfort of a building. One important factor that can affect these properties is the type of bricks used in construction. Bricks can vary in their geometry and thermal coefficient, which can impact their ability to transfer heat through the wall. The geometry of a brick can affect its thermal properties by altering the amount of air trapped within it and the surface area available for heat transfer. Hollow bricks or those with complex geometries may have lower thermal conductivity than regular solid bricks due to the air pockets trapped within them. Conversely, larger surface areas on the exterior of the brick can increase heat transfer. The thermal coefficient of clay, a common material used in brick production, is another important factor. Clay has relatively low thermal conductivity, meaning it is a poor conductor of heat. However, the quality of the clay, as well as the firing temperature and duration used in brick production, can impact its thermal coefficient. Higher firing temperatures and longer firing times can result in a more compact and dense clay brick, which can improve its thermal properties. In summary, the thermal insulation properties of building walls can be significantly affected by the type of bricks used in their construction. It is important to consider the geometry and thermal coefficient of the bricks when designing a building to achieve the desired level of thermal insulation. By selecting bricks with appropriate properties, designers can help to improve the energy efficiency and comfort of the building while reducing its environmental impact.\",\"PeriodicalId\":33263,\"journal\":{\"name\":\"Ceramics-Switzerland\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics-Switzerland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ceramics6030089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6030089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

建筑墙体的隔热性能对建筑的整体能源效率和舒适度至关重要。影响这些性能的一个重要因素是建筑中使用的砖的类型。砖的几何形状和热系数各不相同,这可能会影响它们通过墙壁传递热量的能力。砖的几何形状可以通过改变其内部的空气量和可用于传热的表面积来影响其热性能。空心砖或那些具有复杂几何形状的砖可能具有比普通实心砖更低的导热性,因为它们内部被困在空气中。相反,在砖的外部较大的表面积可以增加传热。粘土的热系数是另一个重要的因素,粘土是砖生产中常用的材料。粘土的导热性相对较低,这意味着它是热的不良导体。然而,粘土的质量,以及砖生产中使用的烧制温度和持续时间,都会影响其热系数。较高的烧制温度和较长的烧制时间可以使粘土砖更加致密,从而改善其热性能。总而言之,建筑墙体的保温性能会受到其建筑中使用的砖的类型的显著影响。在设计建筑物时,考虑砖块的几何形状和热系数以达到所需的隔热水平是很重要的。通过选择具有适当性能的砖块,设计师可以帮助提高建筑的能源效率和舒适度,同时减少对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Building Thermal Insulation: The Impact of Brick Geometry and Thermal Coefficient on Energy Efficiency and Comfort
The thermal insulation properties of building walls are critical to the overall energy efficiency and comfort of a building. One important factor that can affect these properties is the type of bricks used in construction. Bricks can vary in their geometry and thermal coefficient, which can impact their ability to transfer heat through the wall. The geometry of a brick can affect its thermal properties by altering the amount of air trapped within it and the surface area available for heat transfer. Hollow bricks or those with complex geometries may have lower thermal conductivity than regular solid bricks due to the air pockets trapped within them. Conversely, larger surface areas on the exterior of the brick can increase heat transfer. The thermal coefficient of clay, a common material used in brick production, is another important factor. Clay has relatively low thermal conductivity, meaning it is a poor conductor of heat. However, the quality of the clay, as well as the firing temperature and duration used in brick production, can impact its thermal coefficient. Higher firing temperatures and longer firing times can result in a more compact and dense clay brick, which can improve its thermal properties. In summary, the thermal insulation properties of building walls can be significantly affected by the type of bricks used in their construction. It is important to consider the geometry and thermal coefficient of the bricks when designing a building to achieve the desired level of thermal insulation. By selecting bricks with appropriate properties, designers can help to improve the energy efficiency and comfort of the building while reducing its environmental impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1